A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tying the loose ends together in DNA double strand break repair with 53BP1. | LitMetric

Tying the loose ends together in DNA double strand break repair with 53BP1.

Cell Div

Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030, USA.

Published: August 2006

AI Article Synopsis

  • Cells respond to DNA double-stranded breaks (DSBs) through the activation of DNA damage response networks, primarily involving PIK kinases like ATM, ATR, and DNA-PK.
  • DSBs can be repaired using two main pathways: homologous recombination (HR), which is more accurate, and non-homologous end joining (NHEJ), which is error-prone.
  • The protein 53BP1 is crucial in managing the cellular response to DSBs, particularly in preventing harmful chromosomal translocations in B and T cells.

Article Abstract

To maintain genomic stability and ensure the fidelity of chromosomal transmission, cells respond to various forms of genotoxic stress, including DNA double-stranded breaks (DSBs), through the activation of DNA damage response signaling networks. In response to DSBs as induced by ionizing radiation (IR), during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in B cells of lymphoid origin, the phosphatidyl inositol-like kinase (PIK) kinases ATM (mutated in ataxia telangiectasia), ATR (ATM and Rad3-related kinase), and the DNA-dependent protein kinase (DNA-PK) activate signaling pathways that lead to DSB repair. DSBs are repaired by either of two major, non-mutually exclusive pathways: homologous recombination (HR) that utilizes an undamaged sister chromatid template (or homologous chromosome) and non- homologous end joining (NHEJ), an error prone mechanism that processes and joins broken DNA ends through the coordinated effort of a small set of ubiquitous factors (DNA-PKcs, Ku70, Ku80, artemis, Xrcc4/DNA lig IV, and XLF/Cernunnos). The PIK kinases phosphorylate a variety of effector substrates that propagate the DNA damage signal, ultimately resulting in various biological outputs that influence cell cycle arrest, transcription, DNA repair, and apoptosis. A variety of data has revealed a critical role for p53-binding protein 1 (53BP1) in the cellular response to DSBs including various aspects of p53 function. Importantly, 53BP1 plays a major role in suppressing translocations, particularly in B and T cells. This report will review past experiments and current knowledge regarding the role of 53BP1 in the DNA damage response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1601952PMC
http://dx.doi.org/10.1186/1747-1028-1-19DOI Listing

Publication Analysis

Top Keywords

dna damage
12
dna
8
damage response
8
response dsbs
8
pik kinases
8
tying loose
4
loose ends
4
ends dna
4
dna double
4
double strand
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!