Amphiphysins interact directly with clathrin and have a function in clathrin-mediated synaptic vesicle recycling and clathrin-mediated endocytosis. The neuronal isoform amphiphysin-1 is a serine/threonine phosphoprotein that is dephosphorylated upon stimulation of synaptic vesicle endocytosis. Rephosphorylation was stimulated by nerve growth factor. We analysed the regulation of amphiphysin-clathrin interactions by phosphorylation. The N-terminal domain of clathrin bound to unphosphorylated amphiphysin-1, but not to the phosphorylated protein. A search for possible phosphorylation sites revealed two casein kinase 2 consensus motifs in close proximity to the clathrin binding sites in amphiphysin-1 and -2. We mutagenized these residues (T350 and T387) to glutamate, mimicking a constitutive phosphorylation. The double mutant showed a strong reduction in clathrin binding. The assumption that casein kinase 2 phosphorylates amphiphysin-1 at T350 and T387 was corroborated by experiments showing that: (i) casein kinase 2 phosphorylated these residues directly in vitro, (ii) when expressed in HeLa cells, the glutamate mutant showed reduced phosphorylation, and (iii) casein kinase 2 inhibitors blocked nerve growth factor-induced phosphorylation of endogenous amphiphysin-1 in PC12 cells. These observations are consistent with the hypothesis that, upon activation by nerve growth factor, casein kinase 2 phosphorylates amphiphysin-1 and thereby regulates the endocytosis of clathrin-coated vesicles via the interaction between clathrin and amphiphysin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2006.04037.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!