Toxicity mediated by soluble oligomers of beta-amyloid(1-42) on cholinergic SN56.B5.G4 cells.

J Neurochem

Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Leipzig, Germany.

Published: September 2006

Alzheimer's disease (AD) is characterized by cholinergic dysfunction and progressive basal forebrain cell loss which has been assumed to be as a result of the extensive accumulation of beta-amyloid (Abeta). In addition to Abeta fibrillar assemblies, there are pre-fibrillar forms that have been shown to be neurotoxic, although their role in cholinergic degeneration is still not known. Using the cholinergic cell line SN56.B5.G4, we investigated the effect of different Abeta(1-42) aggregates on cell viability. In our model, only soluble oligomeric but not fibrillar Abeta(1-42) forms induced toxicity in cholinergic cells. To determine whether the neurotoxicity of oligomeric Abeta(1-42) was caused by its oxidative potential, we performed microarray analysis of SN56.B5.G4 cells treated either with oligomeric Abeta(1-42) or H(2)O(2). We showed that genes affected by Abeta(1-42) differed from those affected by non-specific oxidative stress. Many of the genes affected by Abeta(1-42) were present in the endoplasmic reticulum (ER), Golgi apparatus and/or otherwise involved in protein modification and degradation (chaperones, ATF6), indicating a possible role for ER-mediated stress in Abeta-mediated toxicity. Moreover, a number of genes, which are known to be involved in AD (clusterin, Slc18a3), were identified. This study provides important leads for the understanding of oligomeric Abeta(1-42) toxicity in cholinergic cells, which may account in part for cholinergic degeneration in AD.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2006.04015.xDOI Listing

Publication Analysis

Top Keywords

oligomeric abeta1-42
12
sn56b5g4 cells
8
cholinergic degeneration
8
toxicity cholinergic
8
cholinergic cells
8
genes abeta1-42
8
cholinergic
7
abeta1-42
7
toxicity
4
toxicity mediated
4

Similar Publications

Two connected histopathological hallmarks of Alzheimer's disease (AD) are chronic neuroinflammation and synaptic dysfunction. The accumulation of the most prevalent posttranslationally modified form of Aβ1-42, pyroglutamylated amyloid-β (Aβ3(pE)-42) in astrocytes is directly linked to glial activation and the release of proinflammatory cytokines that in turn contribute to early synaptic dysfunction in AD. At present, the mechanisms of Aβ3(pE)-42 uptake to astrocytes are unknown and pharmacological interventions that interfere with this process are not available.

View Article and Find Full Text PDF

Amyloid-beta peptide oligomers (AβO) have been considered "primum movens" for a cascade of events that ultimately cause selective neuronal death in Alzheimer's disease (AD). However, initial events triggered by AβO have not been clearly defined. Synaptic (Syn) N-methyl-d-aspartate receptors (NMDAR) are known to activate cAMP response element-binding protein (CREB), a transcriptional factor involved in gene expression related to cell survival, memory formation and synaptic plasticity, whereas activation of extrasynaptic (ESyn) NMDARs was linked to excitotoxic events.

View Article and Find Full Text PDF

Glycoprotein non-metastatic melanoma protein B (GPNMB) is up-regulated in one subtype of microglia (MG) surrounding senile plaque depositions of amyloid-beta (Aβ) peptides. However, whether the microglial GPNMB can recognize the fibrous Aβ peptides as ligands remains unknown. In this study, we report that the truncated form of GPNMB, the antigen for 9F5, serves as a scavenger receptor for oligomeric Aβ (o-Aβ) in rat primary type 1 MG.

View Article and Find Full Text PDF

Abnormal aggregation and fibrillogenesis of amyloid-β protein (Aβ) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aβ fibrillogenesis in the brain is crucial for the treatment of AD. Luteoloside, as one of the polyphenolic compounds, is found to have a certain therapeutic effect on nervous system diseases.

View Article and Find Full Text PDF

Alzheimer disease (AD) is a widespread neurodegenerative disease characterized by the accumulation of oligomeric toxic forms of β-amyloid (Aβ1-42) and dysfunction of the cholinergic system in the different brain regions. However, the exact mechanisms of AD pathogenesis and the role of the nicotinic acetylcholine receptors (nAChRs) in the disease progression remain unclear. Here, we revealed a decreased expression of a number of the Ly6/uPAR proteins targeting nAChRs in the cerebellum of 2xTg-AD mice (model of early AD) in comparison with non-transgenic mice both at mRNA and protein levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!