Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
LC-MS/MS was used to identify secreted proteins in the Antarctic archaeon Methanococcoides burtonii. Seven proteins possessing a classical class 1 signal peptide were identified in the supernatant from cultures grown at 4 and 23 degrees C. The proteins included a putative S-layer cell surface protein, cell surface protein involved with cell adhesion, and trypsin-like serine protease. Protease activity was detected in the secreted fraction, and the signal peptide cleavage site of the protease was confirmed using Edman sequencing. The expression profile of putative cell surface proteins suggests a requirement for cell interactions during growth at low temperature. Sequences of the secreted proteins were used to compile a dataset containing a further 32 predicted secreted proteins from the Methanosarcinaceae. Many of these proteins were also S-layer cell surface proteins with a variety of predicted roles, particularly in cell-cell interaction. Computational analysis of signal peptides revealed a preference for lysine in the n-region, leucine in the h-region, and a eucaryal-type cleavage site, highlighting the mosaic nature of signal peptides in Archaea. This is the first study to experimentally characterize secreted proteins from a cold-adapted archaeon and provides new insight and a functional dataset for studying secretion in Archaea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr060220x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!