Glutaric acidaemia type I (GA I) is an inborn error of metabolism caused by a deficiency of glutaryl-CoA dehydrogenase (GCDH) and is characterized clinically by striatal degeneration that almost always occurs in early childhood. A murine knockout model of GA I has the organic aciduria seen in the human disorder, but this model does not develop striatal degeneration spontaneously. 3-Nitropropionic acid (3NP), a succinic dehydrogenase inhibitor with specificity for the striatum, was investigated as a potential initiator of striatal degeneration in GCDH-deficient mice. This study shows that GCDH-deficient mouse pups are more susceptible to 3NP than their wild-type littermates, and that all mouse pups are more sensitive to 3NP as infants than as adolescents and adults. Increased sensitivity to 3NP early in life may model the developmental window for the striatal damage observed in human GA I.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10545-006-0102-9DOI Listing

Publication Analysis

Top Keywords

striatal degeneration
12
glutaric acidaemia
8
acidaemia type
8
3-nitropropionic acid
8
mouse pups
8
infant mice
4
mice glutaric
4
type increased
4
increased vulnerability
4
vulnerability 3-nitropropionic
4

Similar Publications

Executive dysfunction in Parkinson's disease: From neurochemistry to circuits, genetics and neuroimaging.

Prog Neuropsychopharmacol Biol Psychiatry

January 2025

Department of Rehabilitation, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Department of Clinical Medical Research Center, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China. Electronic address:

Cognitive decline is one of the most significant non-motor symptoms of Parkinson's disease (PD), with executive dysfunction (EDF) being the most prominent characteristic of PD-associated cognitive deficits. Currently, lack of uniformity in the conceptualization and assessment scales for executive functions impedes the early and accurate diagnosis of executive dysfunction in PD. The neurobiological mechanisms of executive dysfunction in PD remain poorly understood.

View Article and Find Full Text PDF

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

Asymmetric dopaminergic degeneration of the striatum is a characteristic feature of Parkinson's disease, associated with right-left asymmetry in motor function. As such, studying asymmetry provides insights into progressive neurodegeneration between cerebral hemispheres. Given the impact of Lewy pathology on various neurotransmitter systems beyond the dopaminergic, it may be that other neuronal systems in the predominantly affected hemisphere are similarly affected.

View Article and Find Full Text PDF

Degeneration of midbrain nigrostriatal dopaminergic neurons is a pathological hallmark of Parkinson's disease (PD). Peripheral delivery of a compound(s) to arrest or slow this dopaminergic degeneration is a key therapeutic goal. Pan-inhibitors of histone deacetylase (HDAC) enzymes, key epigenetic regulators, have shown therapeutic promise in PD models.

View Article and Find Full Text PDF

Long somatic DNA-repeat expansion drives neurodegeneration in Huntington's disease.

Cell

January 2025

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02215, USA. Electronic address:

In Huntington's disease (HD), striatal projection neurons (SPNs) degenerate during midlife; the core biological question involves how the disease-causing DNA repeat (CAG) in the huntingtin (HTT) gene leads to neurodegeneration after decades of biological latency. We developed a single-cell method for measuring this repeat's length alongside genome-wide RNA expression. We found that the HTT CAG repeat expands somatically from 40-45 to 100-500+ CAGs in SPNs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!