The aim of our study was to investigate the effects of ovariectomy on rat femur biomechanical parameters. Bone mineral density (BMD) and histological investigation were also evaluated. Fourteen female Sprague-Dawley rats (seven ovariectomized, seven control) were used. BMD was measured by dual-energy X-ray absorbsiometry. Bone biomechanical parameters were measured in femoral midshaft with tensile test using a biomaterial testing machine and maximum load, stiffness, energy absorption capacity (structural properties), ultimate stress, ultimate strain, and elastic modulus (material properties) were calculated. Diaphyseal cortical bone thickness was measured by using histological method. The ovariectomized (OVX) rat femur's BMD was 14% lower than control rats (p=0.006). Mean maximum load was 55% less than the control group's (p=0.0001). Stiffness was 72% less in OVX rats (p=0.05). Femurs of rats with OVX had 32% less absorbed energy than controls (p=0.09). From the stress-strain curve ultimate stress, ultimate strain and elastic modulus was calculated. Elastic modulus was 53% less than controls (p=0.05). Ultimate stress decreased 21% in OVX rats (p=0.097). Ultimate strain was 25% less than controls in OVX rats. Cortical thickness was significantly decreased in OVX rats than in controls (p<0.05). In conclusion, femur biomechanical parameters are decreased in osteoporosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10067-006-0367-2 | DOI Listing |
Int J Mol Sci
December 2024
Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil.
Menopause occurs due to the depletion of the ovarian reserve, leading to a progressive decline in estrogen (E2) levels. This decrease in E2 levels increases the risk of developing several diseases and can coexist with chronic kidney disease (CKD). Arterial hypertension (AH) is another condition associated with menopause and may either contribute to or result from CKD.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
Osteoporosis (OP) is a chronic inflammatory bone disease characterized by reduced bone structure and strength, leading to increased fracture risk. Effective therapies targeting both bone and cartilage are limited. This study compared the therapeutic effects of extracorporeal shockwave therapy (ESWT), bisphosphonate (Aclasta), and human Wharton jelly-derived mesenchymal stem cells (WJMSCs) in a rat model of OP.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
January 2025
Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
J Orthop Surg Res
January 2025
Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!