Purpose: High epidermal growth factor receptor (EGFR) gene copy number is associated with poor prognosis in lung cancer, but such findings have not been reported for HNSCC. A better understanding of the EGFR pathway may improve the use of EGFR inhibitors in HNSCC.
Patients And Methods: EGFR status was analyzed in 86 tumor samples from 82 HNSCC patients by fluorescent in situ hybridization (FISH) to determine EGFR gene copy number, by polymerase chain reaction and direct sequencing for activating mutations, and by DNA microarray and immunohistochemistry for RNA and protein expression. The results were associated with patient characteristics and clinical end points.
Results: Forty-three (58%) of 75 samples with FISH results demonstrated EGFR high polysomy and/or gene amplification (FISH positive). The FISH-positive group did not differ from the FISH-negative group with respect to age, sex, race, tumor grade, subsites and stage, or EGFR expression by analyses of RNA or protein. No activating EGFR mutations were found. However, the FISH-positive group was associated with worse progression-free and overall survival (P < .05 and P < .01, respectively; log-rank test). When microarray data were interrogated using the FISH results as a supervising parameter, ECop (which is known to coamplify with EGFR and regulate nuclear factor-kappa B transcriptional activity) had higher expression in FISH-positive tumors.
Conclusion: High EGFR gene copy number by FISH is frequent in HNSCC and is a poor prognostic indicator. Additional investigation is indicated to determine the biologic significance and implications for EGFR inhibitor therapies in HNSCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1200/JCO.2006.07.2587 | DOI Listing |
Prenat Diagn
January 2025
Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Prenatal cell-free DNA (cfDNA) screening has advanced significantly, extending beyond detecting aneuploidies to sub-chromosomal copy number variations. However, its application for screening dominant single-gene conditions, often caused by de novo variants, remains underutilized in the general obstetric population. This study reviews recent data and experience on prenatal cfDNA screening for dominant monogenic conditions using multiple-gene panels, highlighting its potential to enhance early detection and management of genetic disorders.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China.
Catabolic plasmids are critical factors in the degradation of recalcitrant xenobiotics, such as dioxins. Understanding the persistence and evolution of native catabolic plasmids is pivotal for controlling their function in microbial remediation. Here, we track the fitness and evolution of Rhodococcus sp.
View Article and Find Full Text PDFSci Rep
January 2025
Departments of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
The impact of mitochondrial and lysosomal co-dysfunction on breast cancer patient outcomes is unclear. The objective of this study is to develop a predictive machine learning (ML) model utilizing mitochondrial and lysosomal co-regulators in order to provide a foundation for future studies focused on breast cancer (BC) patients' stratification and personalized interventions. Firstly, Differences and correlations of mitochondrial and lysosome related genes were screened and validated by differential analysis, copy number variation (CNV), single nucleotide polymorphism (SNPs) and correlation analysis.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
MicroRNAs (miRNAs) are highly conserved endogenous non-coding RNAs that play a crucial role in fish immune response by regulating gene expression at the post-transcriptional level. In recent years, the viral diseases caused by infectious hematopoietic necrosis virus (IHNV) have caused significant economic losses in rainbow trout (Oncorhynchus mykiss) aquaculture, whereas the immune regulatory mechanisms of miRNAs involved in rainbow trout resistance to IHNV infection remains largely undefined. In this study, we analyzed the structural characteristics of Oncorhynchus mykiss tumor necrosis factor receptor-associated factor 3 (OmTRAF3) by bioinformatics software and explored the molecular mechanism of miR-203-3p in rainbow trout resistance to IHNV by regulating OmTRAF3 in vivo and in vitro.
View Article and Find Full Text PDFJ Thorac Oncol
January 2025
Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:
Background: Mutations in STK11, KEAP1, and SMARCA4 predispose to inferior immune checkpoint inhibitor (ICI) efficacy in non-small cell lung cancer (NSCLC), particularly among KRAS-mutant cases. However, the frequency, clinicopathologic features, and clinical impact of deletions in these genes are poorly characterized.
Methods: Clinicopathologic correlates of STK11, KEAP1, and SMARCA4 deletion were analyzed in nonsquamous NSCLCs at Dana-Farber Cancer Institute (DFCI).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!