Directed cell migration requires cell polarization and adhesion turnover, in which the actin cytoskeleton and microtubules work critically. The Rho GTPases induce specific types of actin cytoskeleton and regulate microtubule dynamics. In migrating cells, Cdc42 regulates cell polarity and Rac works in membrane protrusion. However, the role of Rho in migration is little known. Rho acts on two major effectors, ROCK and mDia1, among which mDia1 produces straight actin filaments and aligns microtubules. Here we depleted mDia1 by RNA interference and found that mDia1 depletion impaired directed migration of rat C6 glioma cells by inhibiting both cell polarization and adhesion turnover. Apc and active Cdc42, which work together for cell polarization, localized in the front of migrating cells, while active c-Src, which regulates adhesion turnover, localized in focal adhesions. mDia1 depletion impaired localization of these molecules at their respective sites. Conversely, expression of active mDia1 facilitated microtubule-dependent accumulation of Apc and active Cdc42 in the polar ends of the cells and actin-dependent recruitment of c-Src in adhesions. Thus, the Rho-mDia1 pathway regulates polarization and adhesion turnover by aligning microtubules and actin filaments and delivering Apc/Cdc42 and c-Src to their respective sites of action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1592856PMC
http://dx.doi.org/10.1128/MCB.00283-06DOI Listing

Publication Analysis

Top Keywords

adhesion turnover
20
migrating cells
12
cell polarization
12
polarization adhesion
12
rho-mdia1 pathway
8
pathway regulates
8
regulates cell
8
cell polarity
8
actin cytoskeleton
8
actin filaments
8

Similar Publications

Transmembrane signaling receptors, such as integrins, organize as nanoclusters that provide several advantages, including increasing avidity, sensitivity (increasing the signal-to-noise ratio), and robustness (signaling threshold) of the signal in contrast to signaling by single receptors. Furthermore, compared to large micron-sized clusters, nanoclusters offer the advantage of rapid turnover for the disassembly of the signal. However, whether nanoclusters function as signaling hubs remains poorly understood.

View Article and Find Full Text PDF

Dimethyl fumarate is repurposed to ameliorate aortic aneurysm and dissection in mice.

Eur J Pharmacol

December 2024

Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, Hunan, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, Hunan, China. Electronic address:

Aortic aneurysm and dissection pose fatal threats but no effective drug therapies are available. Previous work has been directed to reduce risk factors or target key pathological events, but none of the translational efforts succeeds. Here, we attempt to repurpose dimethyl fumarate (DMF), an FDA-approved immunomodulatory drug for multiple sclerosis, for the treatment of aortic aneurysm and dissection.

View Article and Find Full Text PDF

The Pro/N-degron recognizing C-terminal to LisH (CTLH) complex is an E3 ligase of emerging interest in the developmental biology field and for targeted protein degradation (TPD) modalities. The human CTLH complex forms distinct supramolecular ring-shaped structures dependent on the multimerization of WDR26 or muskelin β-propeller proteins. Here, we find that, in HeLa cells, CTLH complex E3 ligase activity is dictated by an interplay between WDR26 and muskelin in tandem with muskelin autoregulation.

View Article and Find Full Text PDF

Signal Transduction Mechanisms of Focal Adhesions: Src and FAK-Mediated Cell Response.

Front Biosci (Landmark Ed)

November 2024

Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, 305-8521 Tsukuba, Japan.

Cell-to-substrate adhesion sites, also known as focal adhesion sites (FAs), are complexes of different proteins on the cell surface. FAs play important roles in communication between cells and the extracellular matrix (ECM), leading to signal transduction involving different proteins that ultimately produce the cell response. This cell response involves cell adhesion, migration, motility, cell survival, and cell proliferation.

View Article and Find Full Text PDF

Continuous vaso-occlusive and inflammatory processes cause extensive end-organ damage in adults with sickle cell disease (SCD), and there is little evidence that longterm hydroxyurea therapy prevents this. In initial trials, P-selectin blockade with crizanlizumab reduced SCD vaso-occlusive crisis frequency, and interleukin (IL)-1β inhibition in SCD patients, using canakinumab, lowered inflammatory markers. We used murine SCD models to examine the effects of acute and chronic blockade of Pselectin and of IL-1β on vaso-occlusive events, their inflammatory profile and organ health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!