Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In addition to ionotropic effects, glutamate and acetylcholine have metabotropic modulatory effects on many neurons. Here we show that in the stomatogastric ganglion of the lobster, glutamate, one of the main ionotropic neurotransmitters, modulates the excitability of gastric mill neurons. The neurons in this well-studied system produce rhythmic output to a subset of lobster foregut muscles. Recently, metabotropic glutamate receptor (mGluR) agonists were suggested as modulators of the rhythmic output, in addition to the previously described muscarinic modulation by acetylcholine. However, the cellular mechanisms responsible for these effects on the pattern are not known. Using intracellular recording methods and calcium imaging, we show that glutamate has an excitatory effect on specific neurons in the stomatogastric ganglion, which is mediated by mGluRs. Responses to the application of mGluR type I agonists are transient oscillations in the system, probably arising from network interactions. We show that the excitatory effect is sensitive to phospholipase-C and IP(3) and is G-protein dependent. The G-protein dependency was demonstrated by GDPbetaS and GTPgammaS injection into identified neurons. The depolarizations and oscillations were accompanied by an increase of intracellular Ca(2+) levels and correlated Ca(2+) oscillations. By using cyclopiazonic acid, an endoreticular Ca(2+) uptake inhibitor, we show that some internal calcium release may augment the response, but is not crucial for its production. Interestingly, although Ca(2+) concentration increase is typically associated with the phosphoinositide pathway, in the lobster, the Ca(2+) concentration increase-either voltage dependent or independent-cannot account for the observed depolarization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00591.2005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!