Mechanisms of mitochondrial response to variations in energy demand in eukaryotic cells.

Am J Physiol Cell Physiol

IBGC du CNRS, UMR 5095, Université Victor Segalen Bordeaux 2, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France.

Published: January 2007

This review focuses on the different mechanisms involved in the adjustment of mitochondrial ATP production to cellular energy demand. The oxidative phosphorylation steady state at constant mitochondrial enzyme content can vary in response to energy demand. However, such an adaptation is tightly linked to a modification in both oxidative phosphorylation yield and phosphate potential and is obviously very limited in eukaryotic cells. We describe the three main mechanisms involved in mitochondrial response to energy demand. In heart cells, a short-term adjustment can be reached mainly through metabolic signaling via phosphotransfer networks by the compartmentalized energy transfer and signal transmission. In such a complex regulatory mechanism, Ca(2+) signaling participates in activation of matricial dehydrogenases as well as mitochondrial ATP synthase. These processes allow a large increase in ATP production rate without an important modification in thermodynamic forces. For a long-term adaptation, two main mechanisms are involved: modulation of the mitochondrial enzyme content as a function of energy demand and/or kinetic regulation by covalent modifications (phosphorylations) of some respiratory chain complex subunits. Regardless of the mechanism involved (kinetic regulation by covalent modification or adjustment of mitochondrial enzyme content), the cAMP signaling pathway plays a major role in molecular signaling, leading to the mitochondrial response. We discuss the energetic advantages of these mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00208.2006DOI Listing

Publication Analysis

Top Keywords

energy demand
20
mitochondrial response
12
mechanisms involved
12
mitochondrial enzyme
12
enzyme content
12
eukaryotic cells
8
adjustment mitochondrial
8
mitochondrial atp
8
atp production
8
oxidative phosphorylation
8

Similar Publications

In 2022, the European Union put forward the REPowerEU plan in response to Russia's invasion of Ukraine, aiming at enhancing short-term energy security by diversifying imports and reducing natural gas demand while accelerating the deployment of renewable alternatives in the long term. Here, we quantify the life cycle environmental impacts of both REPowerEU's short-term measures, including the controversial extended coal-fired power plant operations, and how the first year of the crisis was managed in practice. We find that the policy measures' impact on greenhouse gas (GHG) emissions would be negligible, although they could have detrimental effects on other environmental categories.

View Article and Find Full Text PDF

The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.

View Article and Find Full Text PDF

Triazole, a nitrogen-containing five-membered heterocycle with two isomeric forms, 1,2,3-triazole and 1,2,4-triazole, has proven to be a valuable component in the pharmaceutical domain. Owing to its widespread utility in drug development, pharmaceutical and medicinal chemistry, several synthetic methods have been explored, such as different catalytic systems, solvents, and heating methodologies in recent years. However, some methods were associated with several limitations, such as harsh reaction conditions, high temperatures, low atom economy, and long reaction times.

View Article and Find Full Text PDF

Escalating energy demands have often ignited ground-breaking innovations in the current era of electrochemical energy storage systems. Supercapacitors (SCs) have emerged as frontrunners in this regard owing to their exclusive features such ultra-high cyclic stability, power density, and ability to be derived from sustainable sources. Despite their promising attributes, they typically fail in terms of energy density, which poses a significant hindrance to their widespread commercialization.

View Article and Find Full Text PDF

The growing demand for efficient, stable, and environmentally friendly photovoltaic technologies has motivated the exploration of nontoxic perovskite materials such as KGeCl. However, the performance of KGeCl-based perovskite solar cells (PSCs) depends heavily on the compatibility of charge transport layers (CTLs) and optimization of device parameters. In this study, six PSC configurations were simulated using SCAPS-1D software, incorporating CTLs such as Alq, CSTO, VO, PB, and SbS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!