The Hedgehog proteins play a crucial role in metazoan embryo development. Constitutive activation of the pathway is associated with multiple types of cancer. Recent experimental data suggest involvement of Hedgehog signaling in vascular remodeling, germ cell migration, and axon guidance. The molecular mechanisms underlying these effects remain elusive. Here we show that yolk sac-derived endothelial cells and embryonic fibroblasts can directly respond to the Hedgehog signal by increased migration in an in vitro scratch (wound) assay. We also identify Hedgehog transcriptional target genes in these cells, many of which participate in cell migration, axon guidance, and angiogenesis processes. Inhibition of one such molecular pathway, neuropilin-flavomonooxygenase, blocks Hedgehog-induced cell migration. These findings suggest that Hedgehog signaling directly affects embryonic endothelial and fibroblast cell migration via molecules and pathways known to regulate cell migration in response to a variety of environmental cues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M605905200 | DOI Listing |
Methods Mol Biol
January 2025
Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
Lineage tracing has significantly advanced our comprehension in many areas of biology, such as development or immunity, by precisely measuring cellular processes like migration, division, or differentiation across labeled cells and their progeny. Traditional recombinase-based prospective lineage tracing is limited by the need for a priori cell type information and is constrained in the numbers of clones it can simultaneously track. In this sense, clonal lineage tracing with integrated random barcodes offers a robust alternative, enabling researchers to label and track a vast array of cells and their progeny over time.
View Article and Find Full Text PDFJ Virol
December 2024
Laboratory of Virology, Regional Centre for Biotechnology, National Capital Region Biotechnology Science Cluster, Faridabad, Haryana, India.
Extracellular vesicles (EVs) emerged as critical contributors to the pathogenesis of vascular endothelial barrier dysfunction during the inflammatory response to infection. However, the contribution of circulating EVs to modifying endothelial function during dengue virus infection remains unclear. In this study, we showed that severe dengue patients' plasma-derived EV (SD-EV) were found to carry elevated levels of different protein cargos, e.
View Article and Find Full Text PDFCancer Res
January 2025
University of California, San Diego, La Jolla, CA, United States.
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers; thus, identifying more effective therapies is a major unmet need. In this study, we characterized the super enhancer (SE) landscape of human PDAC to identify drivers of the disease that might be targetable. This analysis revealed MICAL2 as a super enhancer-associated gene in human PDAC, which encodes the flavin monooxygenase MICAL2 that induces actin depolymerization and indirectly promotes SRF transcription by modulating the availability of serum response factor coactivators myocardin-related transcription factors (MRTF-A and MRTF-B).
View Article and Find Full Text PDFTissue Eng Part A
January 2025
Department of Orthopedic Surgery and Orthopedic Research Institute, Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China.
Recently, there has been increased attention on the treatment of cartilage repair. Overall, we constructed PHBVHHx-COL, a composite hydrogel of PHBVHHx-co-PEG and collagen, and evaluated its cartilage repair efficacy through and studies using hydrogel loaded with peripheral blood-derived mesenchymal stem cells (PBMSCs). Rheological properties and compressive mechanical properties of the hydrogels were systematically evaluated.
View Article and Find Full Text PDFIUBMB Life
January 2025
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Targeting the influencing factors in tumor growth and expansion in the tumor microenvironment is one of the key approaches to cancer immunotherapy. Various factors in the tumor microenvironment can in cooperation stimulate tumor growth, suppress anti-tumor immune responses, promote drug resistance, and ultimately enhance tumor recurrence. Therefore, due to the dependence and close cooperation of these axes, their combined targeting can have a greater effect compared to their individual targeting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!