A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cation and anion transport through hydrophilic pores in lipid bilayers. | LitMetric

Cation and anion transport through hydrophilic pores in lipid bilayers.

J Chem Phys

Chemical Engineering Department, The University of Michigan, Ann Arbor, Michigan 48109, USA.

Published: August 2006

To understand the origin of transmembrane potentials, formation of transient pores, and the movement of anions and cations across lipid membranes, we have performed systematic atomistic molecular dynamics simulations of palmitoyl-oleoyl-phosphatidylcholine (POPC) lipids. A double bilayer setup was employed and different transmembrane potentials were generated by varying the anion (Cl-) and cation (Na+) concentrations in the two water compartments. A transmembrane potential of approximately 350 mV was thereby generated per bilayer for a unit charge imbalance. For transmembrane potential differences of up to approximately 1.4 V, the bilayers were stable, over the time scale of the simulations (10-50 ns). At larger imposed potential differences, one of the two bilayers breaks down through formation of a water pore, leading to both anion and cation translocations through the pore. The anions typically have a short residence time inside the pore, while the cations show a wider range of residence times depending on whether they bind to a lipid molecule or not. Over the time scale of the simulations, we do not observe the discharge of the entire potential difference, nor do we observe pore closing, although we observe that the size of the pore decreases as more ions translocate. We also observed a rare lipid flip-flop, in which a lipid molecule translocated from one bilayer leaflet to the opposite leaflet, assisted by the water pore.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2217737DOI Listing

Publication Analysis

Top Keywords

transmembrane potentials
8
transmembrane potential
8
potential differences
8
differences bilayers
8
time scale
8
scale simulations
8
water pore
8
lipid molecule
8
pore
6
lipid
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!