Accurate computational determination of the binding energy of the SO3 x H2O complex.

J Chem Phys

Center for Functional Nanostructures (CFN) and Lehrstuhl für Theoretische Chemie, Institut für Physikalische Chemie, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany.

Published: August 2006

Reliable thermochemical data for the reaction SO3 + H2O<-->SO3 x H2O (1a) are of crucial importance for an adequate modeling of the homogeneous H2SO4 formation in the atmosphere. We report on high-level quantum chemical calculations to predict the binding energy of the SO3 x H2O complex. The electronic binding energy is accurately computed to De = 40.9+/-1.0 kJ/mol = 9.8+/-0.2 kcal/mol. By using harmonic frequencies from density functional theory calculations (B3LYP/cc-pVTZ and TPSS/def2-TZVP), zero-point and thermal energies were calculated. From these data, we estimate D0 = -Delta H(1a)0(0 K) = 7.7+/-0.5 kcal/mol and Delta H(1a)0(298 K) = -8.3+/-1.0 kcal/mol.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2234372DOI Listing

Publication Analysis

Top Keywords

binding energy
12
energy so3
8
so3 h2o
8
h2o complex
8
accurate computational
4
computational determination
4
determination binding
4
complex reliable
4
reliable thermochemical
4
thermochemical data
4

Similar Publications

Nanomaterials that engage in well-defined and tunable interactions with proteins are pivotal for the development of advanced applications. Achieving a precise molecular-level understanding of nano-bio interactions is essential for establishing these interactions. However, such an understanding remains challenging and elusive.

View Article and Find Full Text PDF

Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).

View Article and Find Full Text PDF

CO Adsorption on a Single-Atom Catalyst Stably Embedded in Graphene.

Angew Chem Int Ed Engl

January 2025

Università di Milano-Bicocca, Dipartimento di Scienza dei Materiali, via Cozzi 55, 20125, Milano, ITALY.

Confined single metal atoms in graphene-based materials have proven to be excellent catalysts for several reactions and promising gas sensing systems. However, whether the chemical activity arises from the specific type of metal atom or is a direct consequence of the confinement itself remains unclear. In this work, through a combined density functional theory and experimental surface science study, we address this question by investigating Co and Ni single atoms embedded in graphene (Gr) on a Ni(111) support.

View Article and Find Full Text PDF

Alzheimer's disease is a neurodegenerative chronic disease with a severe social and economic impact in the societies, which still lacks an efficient therapy. Several pathophysiological events (β-amyloid [Aβ] deposits, τ-protein aggregation, loss of cholinergic activity, and oxidative stress) occurs in the progression of the disease. Therefore, the search for efficient multi-targeted agents for the treatment of Alzheimer's disease becomes indispensable.

View Article and Find Full Text PDF

Cyclin-dependent kinases (CDKs), play essential roles in cell cycle progression. CDK activity is controlled through phosphorylation and inhibition by CDK inhibitors, such as p16. Mutations in p16 can lead to diseases such as cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!