Recently, we developed and optimized a new method for the evaluation of the protective properties of serotype 2 inactivated poliovirus vaccines (IPV). The method is based on the immunization and subsequent challenge of transgenic (Tg) mice susceptible to poliovirus. We describe a similar method for the assessment of the protectiveness of serotype 1 IPV and demonstrate that experimental IPV produced from attenuated Sabin strain (sIPV) of serotype 1 poliovirus induced serum neutralizing antibodies, immunoglobulin (Ig) G, IgM, and salivary IgA at titers comparable to those induced by conventional IPV (cIPV) produced from the wild-type Mahoney strain. In contrast to our previous results with serotype 2 sIPV, serotype 1 sIPV provided even better protection of Tg mice than cIPV against challenge with wild-type Mahoney strain.

Download full-text PDF

Source
http://dx.doi.org/10.1086/506949DOI Listing

Publication Analysis

Top Keywords

protective properties
8
inactivated poliovirus
8
sipv serotype
8
wild-type mahoney
8
mahoney strain
8
serotype sipv
8
serotype
5
development transgenic
4
transgenic mouse
4
mouse test
4

Similar Publications

Forest Soil pH and Dissolved Organic Matter Aromaticity Are Distinct Drivers for Soil Microbial Community and Carbon Metabolism Potential.

Microb Ecol

January 2025

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.

The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively.

View Article and Find Full Text PDF

Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.

View Article and Find Full Text PDF

Soil magnetic records in Quaternary red earth (QRE) deposits contain a valuable record of paleoclimate information, providing insights into controls on Earth's climate system in the past and potentially helping to predict its response to perturbations in the future. Here, analysis of the environmental magnetism and mineralogy of the Xuancheng QRE (Anhui Province, South China) shows that magnetic variation was strongly linked to production of authigenic ferrimagnetic minerals such as maghemite. Fine-grained maghemite formed during the weathering-related transformation of iron-bearing illite to vermiculite, generating aggregates of vermiculite or mixed-layer illite-vermiculite.

View Article and Find Full Text PDF

Impact of pollution on microbiological dynamics in the pistil stigmas of Orobanche lutea flowers (Orobanchaceae).

Sci Rep

January 2025

Center for Research and Conservation of Biodiversity, Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland.

Our understanding of the basic relationships of microbiota associated with flowers is still quite limited, especially regarding parasitic plant species. The transient nature of flower parts such as pistil stigmas provides a unique opportunity for temporal investigations. This is the first report of the analysis of bacterial and fungal communities associated with the pistil stigmas of the lucerne parasite, Orobanche lutea.

View Article and Find Full Text PDF

Cobalt regulation biocathode with sulfate-reducing bacteria for enhancing the reduction of antimony and the removal of sulfate in a microbial electrolysis cell simultaneously.

Environ Res

January 2025

School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR. China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR. China. Electronic address:

Antimony (Sb) contamination in water resources poses a critical environmental and health challenge globally. Sulfate reducing bacteria (SRB) are employed to reduce SO to S for removing Sb in a microbial electrolysis cell (MEC). Yet, the reduction efficiency of reducing SO and Sb(Ⅴ) through SRB remains relatively low, and the underlying mechanism remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!