Sampling and decision rules used by honey bees in a foraging arena.

Anim Cogn

Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.

Published: April 2007

Animals must continuously choose among various available options to exploit the most profitable resource. They also need to keep themselves updated about the values of all available options, since their relative values can change quickly due to depletion or exploitation by competitors. While the sampling and decision rules by which foragers profitably exploit a flower patch have attracted a great deal of attention in theory and experiments with bumble bees, similar rules for honey bee foragers, which face similar foraging challenges, are not as well studied. By presenting foragers of the honey bee Apis cerana with choice tests in a foraging arena and recording their behavior, we investigate possible sampling and decision rules that the foragers use to choose one option over another and to track other options. We show that a large part of the sampling and decision-making process of a foraging honey bee can be explained by decomposing the choice behavior into dichotomous decision points and incorporating the cost of sampling. The results suggest that a honey bee forager, by using a few simple rules as part of a Bayesian inference process, is able to effectively deal with the complex task of successfully exploiting foraging patches that consist of dynamic and multiple options.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10071-006-0044-5DOI Listing

Publication Analysis

Top Keywords

honey bee
16
sampling decision
12
decision rules
12
rules honey
8
foraging arena
8
rules foragers
8
sampling
5
rules
5
honey
5
foraging
5

Similar Publications

Background: The mite Varroa destructor is the most serious pest of the western honey bee (Apis mellifera) and a major factor in the global decline of colonies. Traditional control methods, such as chemical pesticides, although quick and temporarily effective, leave residues in hive products, harming bees and operators' health, while promoting pathogen resistance and spread. As a sustainable alternative, RNA interference (RNAi) technology has shown great potential for honey bee pest control in laboratory assays, but evidence of effectiveness in the field has been lacking.

View Article and Find Full Text PDF

Pesticides have a significant impact on the environment, harming valuable non-target organisms like bees. Honeybees, in particular, are ideal bioindicators of pesticide exposure due to extensive research on how pesticides affect their behavior, immunity, development, biomolecules, and detoxification. However, wild pollinators are less studied in terms of pesticide exposure, and their inclusion is essential for a comprehensive risk assessment.

View Article and Find Full Text PDF

As the primary pollinator for many crops, honey bees (Apis mellifera) are critically important to food production and the agricultural economy. Adult mosquito control is often suspected by the public and commercial beekeepers to harm honey bees, creating conflicts between industries. To investigate this matter, a two-year field study was conducted on vegetated wetlands in Salt Lake City, Utah, U.

View Article and Find Full Text PDF

A citizen science platform to sample beehive sounds for monitoring ANSP.

J Environ Manage

January 2025

Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, 230031, China; University of Science and Technology of China, Hefei, 230027, China. Electronic address:

Honey bees usually produce particular sound when they are exposed to air pollution. Based on this principle, we create a citizen science platform to monitor Agricultural Nonpoint Source Pollution (ANSP) based on beehive sounds. Here we show the basic functions of the platform, and illustrate its workflow: sampling and uploading data by beekeepers, automated detection of target compounds from beehive sound recordings, and the outcome of which can be analysed with respect to the motivating management objective.

View Article and Find Full Text PDF

Bee population decline is associated with various stressors, including exposure to pollutants. Among these, titanium dioxide (TiO), an emerging nanoparticle (NP) pollutant, potentially affects living organisms, including bees. This study evaluates the impact of TiO NPs ingestion (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!