Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein.

J Virol

Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong.

Published: September 2006

Perturbation of the function of endoplasmic reticulum (ER) causes stress leading to the activation of cell signaling pathways known as the unfolded protein response (UPR). Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) uses ER as a site for synthesis and processing of viral proteins. In this report, we demonstrate that infection with SARS-CoV induces the UPR in cultured cells. A comparison with M, E, and NSP6 proteins indicates that SARS-CoV spike (S) protein sufficiently induces transcriptional activation of several UPR effectors, including glucose-regulated protein 78 (GRP78), GRP94, and C/EBP homologous protein. A substantial amount of S protein accumulates in the ER. The expression of S protein exerts different effects on the three major signaling pathways of the UPR. Particularly, it induces GRP78/94 through PKR-like ER kinase but has no influence on activating transcription factor 6 or X box-binding protein 1. Taken together, our findings suggest that SARS-CoV S protein specifically modulates the UPR to facilitate viral replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1563899PMC
http://dx.doi.org/10.1128/JVI.00659-06DOI Listing

Publication Analysis

Top Keywords

protein
10
unfolded protein
8
protein response
8
severe acute
8
acute respiratory
8
respiratory syndrome
8
spike protein
8
signaling pathways
8
upr
5
modulation unfolded
4

Similar Publications

Bacterial Nanovesicles as Interkingdom Signaling Moieties Mediating Pain Hypersensitivity.

ACS Nano

January 2025

Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States.

Gut dysbiosis contributes to multiple pathologies, yet the mechanisms of the gut microbiota-mediated influence on systemic and distant responses remain largely elusive. This study aimed to identify the role of nanosized bacterial extracellular vesicles (bEVs) in mediating allodynia, i.e.

View Article and Find Full Text PDF

12/15-Lipoxygenase-Derived Electrophilic Lipid Modifications in Phagocytic Macrophages.

ACS Chem Biol

January 2025

Division of Physiological Chemistry and Metabolism, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-0011, Japan.

Macrophages remove apoptotic cells via phagocytosis, also known as efferocytosis, during inflammation to maintain tissue homeostasis. This process is accompanied by various metabolic changes in macrophages including the production of lipid metabolites by fatty acid oxygenases. Among these, highly reactive metabolites, called lipid-derived electrophiles (LDEs), modify cysteines and other nucleophilic amino acids in intracellular proteins.

View Article and Find Full Text PDF

Biodegradable Vanadium-Based Nanomaterials for Photothermal-Enhanced Tumor Ferroptosis and Pyroptosis.

ACS Appl Mater Interfaces

January 2025

Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China.

The designability and high reactivity of nanotechnology provide strategies for antitumor therapy by regulating the redox state in tumor cells. Here, we synthesize a kind of vanadium dioxide nanoparticle encapsulated in bovine serum albumin and containing disulfide bonds (VSB NPs) for photothermal-enhanced ferroptosis and pyroptosis effects. Mechanism studies show that disulfide bonds can effectively consume overexpressed glutathione (GSH) in the tumor microenvironment, leading to a decrease in glutathione peroxidase 4 (GPX4) activity.

View Article and Find Full Text PDF

Lupus disease activity state and Foxp3 gene polymorphism.

Egypt J Immunol

January 2025

Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.

The autoimmune disease systemic lupus erythematosus (SLE) is presented with many clinical symptoms. The transcription factor fork head box protein 3 (Foxp3) is expressed on regulatory T (T-reg) cells and essential for its development and function. Functional single-nucleotide polymorphisms (SNPs) in the Foxp3-3279 (rs3761548 C/A) gene influence SLE pathogenesis.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a disease of the central nervous system, characterized by progressive demyelination and inflammation. MS is characterized by immune system attacks on the myelin sheath surrounding nerve fibers. Genome-wide association studies revealed a polymorphism in the signal transducer and activator of transcription 4 (STAT4) gene that increases risk for MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!