Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Context: Familial tumoral calcinosis (TC) is a rare autosomal recessive disorder characterized by metastatic calcifications, often periarticular. Biochemical findings include hyperphosphatemia, high 1,25-dihydroxyvitamin D levels, and elevated tubular maximum for phosphate reabsorption per deciliter of glomerular filtrate (TmP/GFR). TC is caused by biallelic mutations of the genes encoding either fibroblast growth factor 23 (FGF23) or uridine diphosphate-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (GalNAc transferase 3 or GALNT3).
Objective: The objective was to identify mutations in FGF23 or GALNT3 responsible for a mild TC phenotype by DNA sequencing and to determine serum FGF23 levels by ELISA.
Patients Or Other Participants: The subject was a 25-yr-old Caucasian woman with eyelid calcifications and biochemical features of TC.
Results: Eyelid biopsy revealed superficial dermis calcifications. There was no history of metastatic calcifications, mineral homeostasis abnormalities, or renal dysfunction. Biochemistry revealed normal levels of calcium, creatinine, PTH, and 25-hydroxyvitamin D, with elevated phosphorous, TmP/GFR, and high normal 1,25-dihydroxyvitamin D levels. Intact FGF23 was undetectable (< 3 pg/ml), whereas C-terminal FGF23 was elevated (698.2 RU/ml). Mutation detection revealed compound heterozygosity for two novel mutations in the glycosyl transferase domain of the GALNT3 gene.
Conclusion: Previously reported GALNT3 mutations in TC have been null mutations. This study shows that missense mutations affecting the glycosyl transferase domain of GalNAc transferase 3 also cause TC. Elevated C-terminal FGF23 fragments with undetectable intact FGF23 suggest that the mutant enzyme lacks the ability to glycosylate FGF23 and that glycosylation by GalNAc transferase 3 is necessary for secretion of functional full-length FGF23.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jc.2006-1247 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!