Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The maintenance of cellular levels of free fatty acids and acyl-CoAs, the activated form of free fatty acids, is extremely important, as imbalances in lipid metabolism have serious consequences for human health. Acyl-coenzyme A (CoA) thioesterases (ACOTs) hydrolyze acyl-CoAs to the free fatty acid and CoASH, and thereby have the potential to regulate intracellular levels of these compounds. We previously identified and characterized a mouse ACOT gene cluster comprised of six genes that apparently arose by gene duplications encoding acyl-CoA thioesterases with localizations in cytosol (ACOT1), mitochondria (ACOT2), and peroxisomes (ACOT3-6). However, the corresponding human gene cluster contains only three genes (ACOT1, ACOT2, and ACOT4) coding for full-length thioesterase proteins, of which only one is peroxisomal (ACOT4). We therefore set out to characterize the human genes, and we show here that the human ACOT4 protein catalyzes the activities of three mouse peroxisomal ACOTs (ACOT3, 4, and 5), being active on succinyl-CoA and medium to long chain acyl-CoAs, while ACOT1 and ACOT2 carry out similar functions to the corresponding mouse genes. These data strongly suggest that the human ACOT4 gene has acquired the functions of three mouse genes by a functional convergent evolution that also provides an explanation for the unexpectedly low number of human genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.06-6042com | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!