Objective: To investigate the general pattern of cholinergic nerve distribution and M(2) receptors in adult rat heart.

Methods: Karnovsky-Roots histochemical staining combining point counting method and immunochemical SABC method with image analysis were used to identify the cholinergic nerves and M(2) receptors, respectively, in adult rat heart.

Results: Positive staining of cholinergic nerves and M(2) receptors was found in all regions of the rat heart, and the point count of cholinergic nerves in the atria was 4.6 times as much as that in ventricles, and the area of immunoreactive substance for M(2) receptors two-fold higher in the atria than in the ventricles. The point counts of the cholinergic nerves in the medial-layer myocardium were fewer than that in subepicardial and endocardial tissues of the left ventricular free wall. However, M(2) receptors were comparable among the 3 layers of the left free ventricular wall.

Conclusion: Cholinergic nerves and M(2) receptors are located in both rat atria and ventricles, but their density is much higher in the atria than in the ventricles. Transmural heterogeneity characterizes cholinergic nerve innervation in the left ventricular free wall without significant differences in M(2) receptor density.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cholinergic nerves
24
nerves receptors
16
atria ventricles
12
cholinergic
8
rat atria
8
cholinergic nerve
8
receptors adult
8
adult rat
8
higher atria
8
left ventricular
8

Similar Publications

Electroacupuncture promotes resolution of inflammation by modulating SPMs via vagus nerve activation in LPS-induced ALI.

Int Immunopharmacol

January 2025

Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China. Electronic address:

During the process of acute lung injury (ALI) associated with sepsis, the α7nAChR in the cholinergic anti-inflammatory pathway (CAP) plays a crucial role. However, the roles of electroacupuncture (EA) and specialized pro-resolving mediators (SPMs) in this context remain unclear. In this study, we demonstrated that EA activates CAP via α7nAChR, reducing lung permeability and inflammatory cytokine release.

View Article and Find Full Text PDF
Article Synopsis
  • The pathogenesis of long COVID (LC) involves uncertainty, complicating the search for effective therapies.
  • The hypothesis suggests that chronic damage to the body's anti-inflammatory mechanisms, particularly through the vagus nerve, HPA axis, and mitochondrial function, plays a crucial role in LC development.
  • The theory posits that SARS-CoV-2 alters these systems at various levels, leading to persistent inflammation due to impaired anti-inflammatory responses from acetylcholine and cortisol, warranting further investigation into glucocorticoid receptor sensitivity and potential long-term epigenetic effects.
View Article and Find Full Text PDF

Botulinum neurotoxin type-A (BoNT/A), which blocks quantal acetylcholine (ACh) release at the neuromuscular junction (NMJ), has demonstrated its efficacy in the symptomatic treatment of blepharospasm. In 3.89% of patients treated for blepharospasm at Tenon Hospital, BoNT/A was no longer effective in relieving the patient's symptoms, and a partial upper myectomy of the muscle was performed.

View Article and Find Full Text PDF

Clonus is characterized by involuntary, rhythmic, oscillatory muscle contractions, typically triggered by rapid muscle stretching and is frequently associated with spastic equinovarus foot (SEVF), where it may increase risk of falls and cause discomfort, pain, and sleep disorders. We hypothesize that selective diagnostic nerve block (DNB) of the tibial nerve motor branches can help identify which muscle is primarily responsible for clonus in patients with SEVF and provide useful information for botulinum neurotoxin type A (BoNT-A) treatment. This retrospective study explored which calf muscles contributed to clonus in 91 patients with SEFV after stroke (n = 31), multiple sclerosis (n = 21), and cerebral palsy (n = 39), using selective DNB.

View Article and Find Full Text PDF

Adaptive remodeling of rat adrenomedullary stimulus-secretion coupling in a chronic hypertensive environment.

Cell Mol Life Sci

December 2024

Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.

Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!