((t)Bu(2)MeSi)(2)Sn=Sn(SiMe(t)Bu(2))(2) 1, prepared by the reaction of (t)Bu(2)MeSiNa with SnCl(2)-diox in THF and isolated as dark-green crystals, represents the first example of acyclic distannene with a Sn=Sn double bond that is stable both in the crystalline form and in solution. This was proved by the crystal and NMR spectral data of 1. Distannene 1 has these peculiar structural features: a shortest among all acyclic distannenes Sn=Sn double bond of 2.6683(10) A, a nearly planar geometry around both Sn atoms, and a highly twisted Sn=Sn double bond. The reactions of 1 toward carbon tetrachloride and phenylacetylene also correspond to the reactivity anticipated for the Sn=Sn double bond. The one-electron reduction of 1 with potassium produced the distannene anion radical, the heavy analogue of alkene ion radicals, for which the particular crystal structure and low-temperature EPR behavior are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja063322xDOI Listing

Publication Analysis

Top Keywords

double bond
20
sn=sn double
16
bond stable
8
double
5
bond
5
tbu2mesi2sn=snsimetbu22 distannene
4
distannene >sn=sn<
4
>sn=sn< double
4
stable solid
4
solid state
4

Similar Publications

Late-Stage C-H Functionalization of Dehydroalanine-Containing Peptides with Arylthianthrenium Salts and Its Application in Synthesis of Tentoxin Analogue.

Org Lett

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

Dehydrophenylalanine has a characteristic unsaturated double bond that makes it indispensable in the context of peptides and proteins. In this study, we report the Pd-catalyzed C(sp)-H arylation of dehydroalanine-containing peptides with arylthianthrenium salts under mild and base free conditions, which provides efficient access to dehydrophenylalanine-containing peptides. This approach enables the efficient coupling of different drug scaffolds and bioactive molecules to the peptides.

View Article and Find Full Text PDF

Noncovalent carbon bonding (C-bonding), a recently explored σ-hole interaction, has primarily been characterized through X-ray structural and computational studies. Evidence of C-bonds in solution is scarce, especially in highly polar solvents like DMSO where solvation effects typically overshadow weak non-covalent interactions. In this work, we present three novel spiroisatin-based -acyl hydrazones (1-3) in which C-bonds play a critical role in stabilizing the conformation in solution.

View Article and Find Full Text PDF

Polyhydroxy starch with abundant hydroxyls and a unique structure enables uniform Zn deposition.

Chem Commun (Camb)

January 2025

Laboratory of Advanced Materials, Aqueous Batteries Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China.

Zinc metal is a promising anode material for zinc-ion batteries (ZIBs), but severe side reactions and dendrite formation hinder its commercialization. In this study, starch is introduced into the ZnSO electrolyte for stabilizing the Zn anode. With abundant hydroxyl groups, starch can reconstruct the H-bond system in the electrolyte, suppressing side reactions.

View Article and Find Full Text PDF

Compared to aziridines, azaphosphiridines, which formally result from the replacement of a carbon atom by phosphorus, have been much less studied. In this work, accurate values for one of the most prominent properties, the ring strain energy (RSE), have been theoretically examined for a wide range of azaphosphiridine derivatives. Strongly related aspects of interest for developing the use of azaphosphiridines in heteroatom and polymer chemistry are ring opening reactions and polymerisations, the latter facilitated by their significantly high RSE.

View Article and Find Full Text PDF

Carbonless DNA.

Phys Chem Chem Phys

January 2025

Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.

Carbonless DNA was designed by replacing all carbon atoms in the standard DNA building blocks with boron and nitrogen, ensuring isoelectronicity. Electronic structure quantum chemistry methods (DFT(ωB97XD)/aug-cc-pVDZ) were employed to study both the individual building blocks and the larger carbon-free DNA fragments. The reliability of the results was validated by comparing selected structures and binding energies using more accurate methods such as MP2, CCSD, and SAPT2+3(CCD)δ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!