Here we present a novel assay that eliminates fluorescent labels and enables "digital detection" of single-molecule DNA hybridization in complex matrixes with greatly simplified protocols. Electronic coupling of the binding state of a single oligonucleotide to the quantum dot (QD) of a single electron transistor (SET) affords direct observation of binding events in real-time via "molecular gating". The change of electrostatic charge associated with the molecular capture is used in lieu of a gate electrode to modulate the SET conductivity. Target oligos containing base mismatches do not elicit SET response under 0.1X SSC at room temperature nor do changes in ionic strength or pH. Furthermore, hybridization is detected even in optically inaccessible matrixes such as serum or quanidinium thiocyanate lysis buffer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533726 | PMC |
http://dx.doi.org/10.1021/ja063022f | DOI Listing |
Small Methods
January 2025
College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China.
ACS Appl Polym Mater
November 2024
IMEM-BRT's Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I, second floor, 08019, Barcelona, Spain.
This study investigates the potential of thermoresponsive hydrogels as innovative substrates for future in vitro diagnostic (IVD) applications using AVAC technology, developed and patented by the Mecwins biomedical company. In order to convert the hydrogel in a substrate compatible with AVAC technology, the following prerequisites were established: (1) the hydrogel layer needs to be permeable to gold nanoparticles (AuNPs), and (2) the optical properties of the hydrogel should not interfere with the detection of AuNPs with AVAC technology. These two key aspects are evaluated in this work.
View Article and Find Full Text PDFBiosens Bioelectron
February 2025
Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA, 92093, USA. Electronic address:
Diagnostic approaches that combine the high sensitivity and specificity of laboratory-based digital detection with the ease of use and affordability of point-of-care (POC) technologies could revolutionize disease diagnostics. This is especially true in infectious disease diagnostics, where rapid and accurate pathogen detection is critical to curbing the spread of disease. We have pioneered an innovative label-free digital detection platform that utilizes Interferometric Reflectance Imaging Sensor (IRIS) technology.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
In super-aged societies, dementia has become a critical issue, underscoring the urgent need for tools to assess cognitive status effectively in various sectors, including financial and business settings. Facial and speech features have been tried as cost-effective biomarkers of dementia including Alzheimer's disease (AD). We aimed to establish an easy, automatic, and extensive screening tool for AD using a chatbot and artificial intelligence.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA. Electronic address:
Accurate, multiplex, and ultrasensitive measurement of different colocalized protein markers on individual tumor-derived extracellular vesicles (EVs) and dimerized proteins with multiple epitopes could provide insights into cancer heterogeneity, therapy management and early diagnostics that cannot be extracted from bulk methods. However, current digital protein assays lack certain features to enable robust colocalization, including multi-color detection capability, large dynamic range, and selectivity against background proteins. Here, we report a lithography-free, inexpensive (< $0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!