A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gap junctional intercellular communication in bovine corneal endothelial cells. | LitMetric

Gap junctional intercellular communication in bovine corneal endothelial cells.

Exp Eye Res

Laboratory of Physiology, KU Leuven, Campus Gasthuisberg O/N, Box 802, Herestraat 49, B-3000 Leuven, Belgium.

Published: November 2006

Gap junctions and/or paracrine mediators, such as ATP, mediate intercellular communication (IC) in non-excitable cells. This study investigates the contribution of gap junctions toward IC during propagation of Ca(2+) waves in cultured bovine corneal endothelial cells (BCEC) elicited by applying a point mechanical stimulus to a single cell in a confluent monolayer. Changes in [Ca(2+)](i) were visualized using the fluorescent dye Fluo-4. The area reached by the Ca(2+) wave, called the active area (AA), was determined as a measure of efficacy of IC. RT-PCR and Western blotting showed expression of Cx43, a major form of connexin, in BCEC. In scrape-loading (using lucifer yellow) and fluorescence recovery after photobleaching (FRAP; using carboxyfluorescein) protocols, significant dye transfer of the hydrophilic dyes was evident indicating functional gap junctional IC (GJIC) in BCEC. Gap27 (300 microM), a connexin mimetic peptide that blocks gap junctions formed by Cx43, reduced the fluorescence recovery in FRAP experiments by 19%. Gap27 also reduced the active area of the Ca(2+) wave induced by point mechanical stimulation from 73,689 microm(2) to 26,936 microm(2), implying that GJIC contribution to the spread of the wave is at least approximately 63%. Inhibitors of ATP-mediated paracrine IC (PIC), such as a combination of apyrase VI and apyrase VII (5U/ml each; exogenous ATPases), suramin (200 microM; P2Y antagonist), or Gap26 (300 microM; blocker of Cx43 hemichannels) reduced the active area by 91%, 67%, and 55%, respectively. Therefore, estimating the contribution of GJIC from the residual active area after PIC inhibition appears to suggest that GJIC contributes no more than approximately 9% towards the active area of the Ca(2+) wave. Gap27 did not affect the enhancement in active area induced by ARL-67156 (200 microM, ectonucleotidase inhibitor), ATP release induced by point mechanical stimulation, and zero [Ca(2+)](o)-induced lucifer yellow uptake, indicating that the peptide has no influence on PIC. Exposure to Gap27 in the presence of PIC inhibitors led to a significant further inhibition of the Ca(2+) wave. The finding that the residual active area after inhibition of PIC by apyrases was much smaller than the reduction of the active area by Gap27, provides evidence for interaction between GJIC and PIC. These findings together suggest that functional gap junctions are present in BCEC, that both GJIC and PIC contribute significantly to IC, and that the two pathways interact.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2006.06.012DOI Listing

Publication Analysis

Top Keywords

active area
32
gap junctions
16
ca2+ wave
16
point mechanical
12
area
9
gap junctional
8
intercellular communication
8
bovine corneal
8
corneal endothelial
8
endothelial cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!