Three grass host species--tall fescue, Festuca arundinacea Schreber; meadow fescue, Festuca pratensis Hudson; and perennial ryegrass, Lolium perenne L.--each infected with a number of different Neotyphodium endophyte isolates, were investigated for their effects on fall armyworm, Spodoptera frugiperda (J.E. Smith). Alkaloid profiles varied among associations. Choice and no-choice tests comparing feeding and early development of S. frugiperda larvae on endophyte-infected and endophyte-free leaf blade material were performed. Endophyte-mediated resistance to S. frugiperda was greatest in meadow fescue and weakest in tall fescue. Some endophyte isolates, particularly in perennial ryegrass and meadow fescue, had a major effect on feeding and development of S. frugiperda, whereas others had no effect or were only weakly efficacious. In tall fescue, some associations deterred S. frugiperda from feeding in choice tests but had no effect on development, whereas larvae reared on other associations weighed significantly more than control larvae fed endophyte-free grass. It was concluded that the deleterious consequences of endophyte infection were easily masked by other factors in tall fescue. Relative leaf age had no effect on feeding preferences in the three host species. Chemical analysis of herbage from the plants used, and results from a no-choice study using spiked artificial diets, failed to individually implicate any of the major known alkaloids (peramine, lolitrem B, ergovaline, and lolines) in the observed effects on S. frugiperda. Hypotheses explaining these observations, and their impact on creating desirable grass-endophyte associations for use in pastures, are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1603/0022-0493-99.4.1462DOI Listing

Publication Analysis

Top Keywords

meadow fescue
12
tall fescue
12
neotyphodium endophyte
8
spodoptera frugiperda
8
fescue festuca
8
perennial ryegrass
8
endophyte isolates
8
development frugiperda
8
frugiperda
7
fescue
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!