Aim: Growth hormone (GH) directly interacts with the enterocyte stimulating ion absorption and reducing ion secretion induced by agonists of cAMP. Since nitric oxide (NO) is involved in the regulation of transepithelial ion transport and acts as a second messenger for GH hemodynamic effects, we tested the hypothesis that NO may be involved in the resulting effects of GH on intestinal ion transport.

Methods: Electrical parameters reflecting trans-epithelial ion transport were measured in Caco-2 cell monolayers mounted in Ussing chambers and exposed to GH and cholera toxin (CT) alone or in combination, in the presence or absence of the NO synthase (NOS) inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME). Similar experiments were conducted to determine cAMP and nitrite/nitrate concentrations. NOS expression was assayed by Western blot analysis.

Results: L-NAME causes total abrogation of absorptive and anti-secretory effects by GH on intestinal ion transport. In addition, L-NAME was able to inhibit the GH-effects on intracellular cAMP concentration under basal conditions and in response to CT. GH induced a Ca(2+)-dependent increase of nitrites/nitrates production, indicating the involvement of the constitutive rather than the inducible NOS isoform, which was directly confirmed by Western blot analysis.

Conclusion: These results suggest that the GH effects on intestinal ion transport, either under basal conditions or in the presence of cAMP-stimulated ion secretion, are mediated at an intracellular level by the activity of cNOS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087838PMC
http://dx.doi.org/10.3748/wjg.v12.i29.4710DOI Listing

Publication Analysis

Top Keywords

ion transport
20
intestinal ion
16
effects intestinal
12
ion
9
growth hormone
8
nitric oxide
8
ion secretion
8
western blot
8
basal conditions
8
transport
5

Similar Publications

Molecular-level insights of microplastic-derived soluble organic matter and heavy metal interactions in different environmental occurrences through EEM-PARAFAC and FT-ICR MS.

J Hazard Mater

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China. Electronic address:

The interactions between microplastic-derived dissolved organic matter (MPs-DOM) and heavy metals (Cu, Pb, and Cd) regulate the complex environmental transport behavior of pollutants in terrestrial and aquatic environments. In this study, fluorescence excited emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) and electrospray ionization coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) were employed to investigate the complexation mechanism of MPs-DOM with heavy metals, as well as the effects of different environmental occurrences of MPs-DOM on the transport behaviors of heavy metals in saturated porous medium. The findings demonstrated that MPs-DOM, particularly humic-like substances containing aromatic structures and various oxygen functional groups, could form stable complexes with heavy metals.

View Article and Find Full Text PDF

Low-carbon fuels, emitting less carbon than fossil fuels, are proposed to help in the transition to a sustainable, decarbonized transport sector. The new biofuels being studied and developed in this context include hydrotreated vegetable oils (HVO). Its chemical composition, which is the same as fossil diesel (primarily composed of linear chain hydrocarbons C12-C24), makes HVO (more homogeneous mixtures of paraffinic hydrocarbons C10-C20, containing no sulfur or aromatics) a fuel with slightly lower density than fossil diesel due to these characteristics.

View Article and Find Full Text PDF

Porous nanomaterials have shown great promise in many desalination applications. Zeolite nanotubes, featuring abundant but inhomogeneous nanopores on their surface, have been recently synthesized in experiments; however, their capacity for desalination is not yet understood. In this work, we use molecular dynamics simulations to investigate the capability of assembled zeolite nanotube membranes to perform in desalination applications due to their inherent multiscale porous properties.

View Article and Find Full Text PDF

Crystalline porous materials, known for their ordered structures, hold promise for efficient hydroxide conductivity in alkaline fuel cells with limited ionic densities. However, the rigid cross-linking of porous materials precludes their processing into membranes, while composite membranes diminish materials' conductivity advantage due to the interrupted phases. Here, we report a self-standing three-dimensional covalent organic framework (3D COF) membrane with efficient OH-transport through its interconnected 3D ionic nanochannels.

View Article and Find Full Text PDF

This paper presents a review of the potential role of the endoplasmic reticulum/Golgi complex and intracellular vesicles in mediating events leading to or associated with vertebrate tissue mineralization. The possible importance of these organelles in this process is suggested by observations that calcium ions accumulate in the tubules and lacunae of the endoplasmic reticulum and Golgi. Similar levels of calcium ions (approaching millimolar) are present in vesicles derived from endosomes, lysosomes and autophagosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!