Peripheral nerve injury leads to the establishment of a novel synaptic connection between afferent Abeta-fiber and lamina II neurons in spinal dorsal horn, which is hypothesized to underlie mechanical allodynia. However, how the novel synapses transmit nociceptive information is poorly understood. In the present study, the role of protein tyrosine kinases (PTKs) in Abeta-fiber-evoked excitatory postsynaptic currents (EPSCs) recorded in lamina II neurons in transverse spinal cord slices of rats was investigated using the whole-cell patch-clamp recording technique. In the slices from sciatic nerve transection (SNT) rats, genistein (50 microM), a broad-spectrum PTKs inhibitor, or PP2 (20 microM), a selective Src family tyrosine kinase inhibitor, significantly reduced the amplitude of Abeta-fiber EPSCs. In sham-operated rats, however, Abeta-fiber EPSCs were insensitive to genistein and PP2. The N-methyl-D-aspartate (NMDA) receptor antagonist AP-V (50 microM) suppressed Abeta-fiber EPSCs in slices from SNT rats but not from sham-operated rats. Following nerve injury, the slow inward currents elicited by bath application of NMDA (100 muM) significantly increased at -70 mV. In SNT rats, genistein and PP2 reduced Abeta-fiber-evoked EPSCs mediated by NMDA receptor; however, genistein produced little effect on Abeta-fiber EPSCs mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. These data suggested that PTKs, especially Src family members, participated in Abeta-fiber-evoked synaptic transmission following sciatic nerve injury via potentiation of NMDA receptor function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1254/jphs.fp0060492 | DOI Listing |
J Neurosci
March 2011
Centre for Integrative Physiology, The University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
Central sensitization in inflammatory pain conditions results in behavioral mechanical hypersensitivity. Specifically, C-fiber-driven spinal hyperexcitability enables A fibers to gain access to specific spinal circuitry, via heterosynaptic facilitatory mechanisms, to mediate mechanical hypersensitivity. However, the precise circuitry engaged is not known.
View Article and Find Full Text PDFJ Pharmacol Sci
September 2006
Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, China.
Peripheral nerve injury leads to the establishment of a novel synaptic connection between afferent Abeta-fiber and lamina II neurons in spinal dorsal horn, which is hypothesized to underlie mechanical allodynia. However, how the novel synapses transmit nociceptive information is poorly understood. In the present study, the role of protein tyrosine kinases (PTKs) in Abeta-fiber-evoked excitatory postsynaptic currents (EPSCs) recorded in lamina II neurons in transverse spinal cord slices of rats was investigated using the whole-cell patch-clamp recording technique.
View Article and Find Full Text PDFJ Neurosci Res
December 2003
Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
Primary afferent fibers are divided into three main subgroups: Abeta-, Adelta-, and C-fibers. Morphological studies have demonstrated that neonatal capsaicin treatment (NCT) depletes C-fiber inputs in the spinal dorsal horn; the electrophysiological features of the NCT-induced changes, however, remain unclear. This issue was addressed by performing whole-cell voltage-clamp recordings from substantia gelatinosa (SG) neurons in dorsal root-attached spinal cord slices.
View Article and Find Full Text PDFJ Neurophysiol
February 2000
Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
In vitro whole cell patch-clamp recording techniques were utilized to study silent pure-N-methyl-D-aspartate (NMDA) receptor-mediated synaptic responses in lamina II (substantia gelatinosa, SG) and lamina III of the spinal dorsal horn. To clarify whether these synapses are present in the adult and contribute to neuropathic pain, transverse lumbar spinal cord slices were prepared from neonatal, naive adult and adult sciatic nerve transected rats. In neonatal rats, pure-NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) were elicited in SG neurons either by focal intraspinal stimulation (n = 15 of 20 neurons) or focal stimulation of the dorsal root (n = 2 of 7 neurons).
View Article and Find Full Text PDFJ Neurosci
January 1999
Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, USA.
Whole-cell patch-clamp recordings were made from substantia gelatinosa (SG) neurons in thick adult rat transverse spinal cord slices with attached dorsal roots to study changes in fast synaptic transmission induced by peripheral inflammation. In slices from naive rats, primary afferent stimulation at Abeta fiber intensity elicited polysynaptic EPSCs in only 14 of 57 (25%) SG neurons. In contrast, Abeta fiber stimulation evoked polysynaptic EPSCs in 39 of 62 (63%) SG neurons recorded in slices from rats inflamed by an intraplantar injection of complete Freund's adjuvant (CFA) 48 hr earlier (p < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!