2'-O-methyl-RNAs incorporating 3-deazaguanine (c3G) were synthesized by use of N,N-diphenylcarbamoyl and N,N-dimethylaminomethylene as its base protecting groups to suppress sheared-type 5'-GA-3'/5'-GA-3' tandem mismatched base pairing which requires the N3 atom. These modified RNAs hybridized more weakly with the complementary and single mismatch-containing RNAs than the unmodified RNAs. The T(m) experiments were performed to clarify the effects of replacement of the fifth G with c(3)G on stabilization of 2'-O-methyl-(5'-CGGCGAGGAG-3')/5'-CUCCGAGCCG-3' and 2'-O-methyl-(5'-CGGGGACGAG-3')/5'-CUCGGACCCG-3'duplexes, which form sheared-type and face-to-face type 5'-GA-3'/5'-GA-3' tandem mismatched base pairs, respectively. Consequently, this replacement led to more pronounced destabilization of the former duplex that needs the N3 atom for the sheared-type base pair than the latter that does not need it for the face-to-face type base pair. A similar tendency was observed for 2'-O-methyl-RNA/DNA duplexes. These results suggest that the N3 atom of G plays an important role in stabilization of the canonical G/C base pair as well as the base discrimination and its loss suppressed formation of the undesired sheared-type mismatched base pair. Computational studies based on ab initio calculations suggest that the weaker hydrogen bonding ability and larger dipole moment of c3G can be the origin of the lower T(m).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636341 | PMC |
http://dx.doi.org/10.1093/nar/gkl088 | DOI Listing |
Environmental DNA (eDNA) analysis has become a popular conservation tool for detecting rare and elusive species. eDNA assays typically target mitochondrial DNA (mtDNA) due to its high copy number per cell and its ability to persist in the environment longer than nuclear DNA. Consequently, the development of eDNA assays has relied on mitochondrial reference sequences available in online databases, or in cases where such data are unavailable, de novo DNA extraction and sequencing of mtDNA.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Advanced Analysis Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-5, Seongbuk-gu, Seoul 02792, Republic of Korea.
Riboswitches are RNAs that recognize ligands and regulate gene expression. They are typically located in the untranslated region of bacterial messenger RNA and consist of an aptamer and an expression platform. In this study, we examine the folding pathway of the Vc2 (Vibrio cholerae) riboswitch aptamer domain, which targets the bacterial secondary messenger cyclic-di-GMP.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
From RNA interference to chromatin silencing, diverse genome defense pathways silence selfish genetic elements to safeguard genome integrity. Despite their diversity, different defense pathways share a modular organization, where numerous specificity factors identify diverse targets and common effectors silence them. In the PIWI-interacting RNA (piRNA) pathway, target RNAs are first identified by complementary base pairing with piRNAs and then silenced by PIWI-clade nucleases.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California 94720, United States.
DNA nanotechnology has emerged as a powerful approach to engineering biophysical tools, therapeutics, and diagnostics because it enables the construction of designer nanoscale structures with high programmability. Based on DNA base pairing rules, nanostructure size, shape, surface functionality, and structural reconfiguration can be programmed with a degree of spatial, temporal, and energetic precision that is difficult to achieve with other methods. However, the properties and structure of DNA constructs are greatly altered due to spontaneous protein adsorption from biofluids.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!