Oxidative stress has been associated with multiple pathologies and disease states, including those involving the cardiovascular system. Previously, we showed that pulmonary artery endothelial cells (PAECs) undergo apoptosis after acute exposure to H(2)O(2). However, the underlying mechanisms regulating this process remain unclear. Because of the prevalence of H(2)O(2) in normal physiological processes and apparent loss of regulation in disease states, the purpose of this study was to develop a more complete understanding of H(2)O(2)-mediated adverse effects on endothelial cell survival. Acute exposure of PAECs to H(2)O(2) caused a dose-dependent increase in cellular release of lactate dehydrogenase and a significant increase in production of superoxide ions, which appear to be generated within the mitochondria, as well as a significant loss of mitochondrial membrane potential and activity. Subsequent to the loss of mitochondrial membrane potential, PAECs exhibited significant caspase activation and apoptotic nuclei. We also observed a significant increase in intracellular free Zn(2+) after bolus exposure to H(2)O(2). To determine whether this increase in Zn(2+) was involved in the apoptotic pathway induced by acute H(2)O(2) exposure, we developed an adenoviral construct for overexpression of the Zn(2+)-binding protein metallothionein-1. Our data indicate that chelating Zn(2+), either pharmacologically with N,N,N',N-tetrakis(2-pyridylmethyl)ethylene diamine or by overexpression of the Zn(2+)-binding protein metallothionein-1, in PAECs conferred significant protection from induction of apoptosis and cell death associated with the effects of acute H(2)O(2) exposure. Our results show that the acute toxicity profile of H(2)O(2) can be attributed, at least in part, to liberation of Zn(2+) within PAECs. We speculate that regulation of Zn(2+) levels may represent a potential therapeutic target for cardiovascular disease associated with acute oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00459.2005DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
acute exposure
12
endothelial cell
8
cell death
8
disease states
8
exposure h2o2
8
loss mitochondrial
8
mitochondrial membrane
8
membrane potential
8
acute h2o2
8

Similar Publications

Methyl CpG binding protein 2 (MeCP2) is a chromatin-associated protein that remains enigmatic despite more than 30 years of research, primarily due to the ever-growing list of its molecular functions, and, consequently, its related pathologies. Loss of function MECP2 mutations cause the neurodevelopmental disorder Rett syndrome (RTT); in addition, dysregulation of MeCP2 expression and/or function are involved in numerous other pathologies, but the mechanisms of MeCP2 regulation are unclear. Advancing technologies and burgeoning mechanistic theories assist our understanding of the complexity of MeCP2 but may inadvertently cloud it if not rigorously tested.

View Article and Find Full Text PDF

PHENYLALANINE AMMONIA-LYASE 2 regulates secondary metabolism and confers manganese tolerance in Stylosanthes guianensis.

Plant Physiol

January 2025

Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.

Stylo (Stylosanthes guianensis) is a tropical legume that exhibits considerable tolerance to manganese (Mn) toxicity, which severely constrains plant growth in acidic soils. To elucidate the Mn detoxification mechanisms in stylo, this study investigated the excess Mn-regulated metabolic profile of stylo roots and examined the role of metabolic enzymes in Mn tolerance. Excess Mn triggered oxidative stress in the two stylo genotypes tested.

View Article and Find Full Text PDF

Take a Deep BReath: Manipulating brassinosteroid homeostasis helps cereals adapt to environmental stress.

Plant Physiol

January 2025

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.

Global climate change leads to the increased occurrence of environmental stress (including drought and heat stress) during the vegetative and reproductive stages of cereal crop development. Thus, more attention should be given to developing new cereal cultivars with improved tolerance to environmental stress. However, during the development of new stress-tolerant cereal cultivars, the balance between improved stress responses (which occur at the expense of growth) and plant yield needs to be maintained.

View Article and Find Full Text PDF

Study Question: Is elevated plasma molybdenum level associated with increased risk for idiopathic premature ovarian insufficiency (POI)?

Summary Answer: Elevated plasma molybdenum level is associated with an increased risk of idiopathic POI through vascular endothelial injury and inhibition of granulosa cell proliferation.

What Is Known Already: Excessive molybdenum exposure has been associated with ovarian oxidative stress in animals but its role in the development of POI remains unknown.

Study Design, Size, Duration: Case-control study of 30 women with idiopathic POI and 31 controls enrolled from August 2018 to May 2019.

View Article and Find Full Text PDF

Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!