Prostanoid receptors regulate the volume-sensitive efflux of osmolytes from murine fibroblasts via a cyclic AMP-dependent mechanism.

J Pharmacol Exp Ther

Molecular and Behavioral Neuroscience Institute, University of Michigan, 5039 Biomedical Science Research Bldg., Ann Arbor, MI 48109-2200, USA.

Published: November 2006

The ability of prostanoid receptors to regulate the volume-dependent efflux of the organic osmolyte taurine from murine fibroblasts (L cells) via a cAMP-dependent mechanism has been examined. Incubation of L cells under hypoosmotic conditions resulted in a time-dependent efflux of taurine, the threshold of release occurring at 250 mOsM. Addition of prostaglandin E(1) (PGE(1)) potently (EC(50) = 2.5 nM) enhanced the volume-dependent efflux of taurine at all time points examined and increased the threshold for osmolyte release to 290 mOsM. Maximal PGE(1) stimulation (250-300% of basal) of taurine release was observed at 250 mOsM. Of the PGE analogs tested, only the EP(2)-selective agonist butaprost (9-oxo-11alpha,16S-dihydroxy-17-cyclobutyl-prost-13E-en-1-oic acid) was able to enhance taurine efflux. Inclusion of 1,9-dideoxyfoskolin, 5-nitro-2-(3-phenylpropylamino) benzoic acid, or 4-[(2-butyl-6,7-dicloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]-butanoic acid blocked the ability of PGE(1) to enhance taurine release, indicating the mediation of a volume-sensitive organic osmolyte and anion channel. The ability of PGE(1) to increase osmolyte release from L cells was mimicked by the addition of agents that inhibit cAMP breakdown, directly activate adenylyl cyclase, or are cell-permeant analogs of cAMP. Taurine release elicited by either PGE(1) or 8-(4-chlorophenylthio)-cAMP was attenuated by >70% in L cells that had been stably transfected with a mutant regulatory subunit of cAMP-dependent protein kinase (PKA). PGE(1) stimulation of taurine efflux was not attenuated by either depletion of intracellular calcium or inhibition of protein kinase C. The results indicate that activation of prostanoid receptors on murine fibroblasts enhances osmolyte release via a cAMP and PKA-dependent mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.106.109496DOI Listing

Publication Analysis

Top Keywords

prostanoid receptors
12
murine fibroblasts
12
osmolyte release
12
taurine release
12
receptors regulate
8
volume-dependent efflux
8
organic osmolyte
8
taurine
8
efflux taurine
8
250 mosm
8

Similar Publications

The aims of this study were to investigate the prevalence of cryofibrinogenemia in a cohort of patients with systemic sclerosis (SSc) regardless of clinical manifestations, who were admitted to our hospital and determine the associations among CF positivity, disease features and ongoing therapies. This was a monocentric and retrospective study. The inclusion criteria were a diagnosis of SSc (according to the ACR/EULAR 2013 classification criteria), regular administration of i.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) infection is associated with increased rates of severe disease, hospitalization, and death in elderly individuals. Clearance of RSV is frequently delayed within this demographic, contributing to the more severe disease course. Geriatric cotton rats mimic this prolonged clearance kinetic and serve as a useful animal model for studying age-associated immunological deficits during RSV infection.

View Article and Find Full Text PDF

Constitutive surface expression of the thromboxane A2 receptor is Pim kinase-dependent.

J Thromb Haemost

January 2025

Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom. Electronic address:

Background: The thromboxane A2 receptor (TPαR) plays an important role in the amplification of platelet responses during thrombosis. Receptor activity is regulated by internalization and receptor desensitization. The mechanism by which constitutive surface expression of the TPαR is regulated is unknown.

View Article and Find Full Text PDF

The urothelium and lamina propria (LP) contribute to sensations of bladder fullness by releasing multiple mediators, including prostaglandins (PGs) and adenosine 5'-triphosphate (ATP), that activate or modulate functions of cells throughout the bladder wall. Mediators that are simultaneously released in response to bladder distention likely influence each other's mechanisms of release and action. This study investigated whether PGs could alter the extracellular hydrolysis of ATP by soluble nucleotidases (s-NTDs) released in the LP of nondistended or distended bladders.

View Article and Find Full Text PDF

Farnesoid X receptor (FXR), a nuclear receptor, is expressed in calvaria and bone marrow stromal cells and plays a role in bone homeostasis. However, the mechanism of FXR-activated osteoblast differentiation remains unclear. In this study, we investigated the regulatory mechanism underlying FXR-activated osteoblast differentiation using bone morphogenetic protein-2 (BMP-2)-induced mouse ST-2 mesenchymal stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!