Global replication-independent histone H4 exchange in budding yeast.

Eukaryot Cell

UCHSC at Fitzsimons, Mail stop 8101, P.O. Box 6511, Aurora, CO 80045, USA.

Published: October 2006

The eukaryotic genome is packaged together with histone proteins into chromatin following DNA replication. Recent studies have shown that histones can also be assembled into chromatin independently of DNA replication and that this dynamic exchange of histones may be biased toward sites undergoing transcription. Here we show that epitope-tagged histone H4 can be incorporated into nucleosomes throughout the budding yeast (Saccharomyces cerevisiae) genome regardless of the phase of the cell cycle, the transcriptional status, or silencing of the region. Direct comparisons reveal that the amount of histone incorporation that occurs in G(1)-arrested cells is similar to that occurring in cells undergoing DNA replication. Additionally, we show that this histone incorporation is not dependent on the histone H3/H4 chaperones CAF-1, Asf1, and Hir1 individually. This study demonstrates that DNA replication and transcription are not necessary prerequisites for histone exchange in budding yeast, indicating that chromatin is more dynamic than previously thought.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1595336PMC
http://dx.doi.org/10.1128/EC.00202-06DOI Listing

Publication Analysis

Top Keywords

dna replication
16
budding yeast
12
histone exchange
8
exchange budding
8
histone incorporation
8
histone
7
global replication-independent
4
replication-independent histone
4
yeast eukaryotic
4
eukaryotic genome
4

Similar Publications

KRAS is a potent oncogenic driver which results in downstream hyperactivation of MAPK signaling, while simultaneously increasing replication stress (RS) and accumulation of DNA damage. KRASG12C mutations are common and targetable alterations. Therapeutic inhibition of KRASG12C and eventual resistance to these inhibitors are also known to drive RS and DNA damage through adaptive mechanisms that maintain addiction to high MAPK signaling.

View Article and Find Full Text PDF

Genomic analysis and replication kinetics of the closely related EHV-1 neuropathogenic 21P40 and abortigenic 97P70 strains.

Vet Res

January 2025

Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.

Varicellovirus equidalpha 1, formerly known as Equid alphaherpesvirus 1 (EHV-1), is highly prevalent and can lead to various problems, such as respiratory problems, abortion, neonatal foal death, and neurological disorders. The latter is known as equine herpes myeloencephalopathy (EHM). Cases of EHM have significantly increased since the beginning of the twenty-first century.

View Article and Find Full Text PDF

Nudiviruses (family ) are double-stranded DNA viruses that infect various insects and crustaceans. Among them, Heliothis zea nudivirus 1 (HzNV-1) represents the rare case of a lepidopteran nudivirus inducing a sexual pathology. Studies about molecular pathological dynamics of HzNV-1 or other nudiviruses are scarce.

View Article and Find Full Text PDF

Modulation of Cell Cycle Kinases by Kaposi's Sarcoma-Associated Herpesvirus.

J Med Virol

January 2025

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

The cell cycle is governed by kinase activity that coordinates progression through a series of regulatory checkpoints, preventing the division of damaged cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple genes that modulate or co-opt the activity of these kinases, shaping the cellular environment to promote viral persistence. By advancing the cell cycle, KSHV facilitates latent replication and subsequent transmission of viral genomes to daughter cells, while also contributing to the establishment of multiple cancer types.

View Article and Find Full Text PDF

Chronically persistent viruses are integral components of the organismal ecosystem in humans and animals . Many of these viruses replicate and accumulate within the cell nucleus . The nuclear location allows viruses to evade cytoplasmic host viral sensors and promotes viral replication .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!