Using proton magnetic resonance imaging and spectroscopy to understand brain "activation".

Brain Lang

Center for Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.

Published: August 2007

Upon stimulation, areas of the brain associated with specific cognitive processing tasks may undergo observable physiological changes, and measures of such changes have been used to create brain maps for visualization of stimulated areas in task-related brain "activation" studies. These perturbations usually continue throughout the period of the stimulating event, and then subside when the event is terminated. In this communication, we consider the nature and meaning of these task-related brain activations. Since stimulation usually results in an increase in the frequency of neuron depolarizations or "spikes", an energy expensive activity that requires ATP for restoration of ionic gradients, additional energy supplies must be rapidly deployed to the stimulated areas or rates of re-polarization could be decreased, and refractory periods between spikes increased. As a result, maximum spiking rates may be decreased and some frequency-encoded information lost. The energy available to brain cells to re-synthesize ATP from ADP is a function of levels of glucose and oxygen in blood, and their availability to stimulated neurons is a function of the rate at which focal blood supplies can be increased (hyperemia). In this review we explore how neurons transmit meaningful encoded information; how the integrity of that information is dependent on a continuous supply of energy, and how proton magnetic imaging and spectroscopy may aid in understanding the process. Finally, evidence is presented that the neuropeptide, N-acetylaspartylglutamate, is a neuronal astrocyte-vascular feedback signal that regulates activation induced focal hyperemic responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bandl.2006.06.119DOI Listing

Publication Analysis

Top Keywords

proton magnetic
8
imaging spectroscopy
8
brain "activation"
8
stimulated areas
8
task-related brain
8
brain
6
magnetic resonance
4
resonance imaging
4
spectroscopy understand
4
understand brain
4

Similar Publications

Magnetic resonance imaging (MRI) is frequently used to monitor disease progression in multiple sclerosis (MS). This study aims to systematically evaluate the correlation between MRI measures and histopathological changes, including demyelination, axonal loss, and gliosis, in the central nervous system of MS patients. We systematically reviewed post-mortem histological studies evaluating myelin density, axonal loss, and gliosis using quantitative imaging in MS.

View Article and Find Full Text PDF

Molecular miscibility of ASD blend components: an evaluation of (the added value of) solid state NMR spectroscopy and relaxometry.

J Pharm Sci

January 2025

Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium. Electronic address:

In order to evaluate the stability of an amorphous solid dispersion (ASD) it is crucial to be able to accurately determine whether the ASD components are homogeneously mixed or not. Several solid-state analysis techniques are at the disposal of the formulation scientist, such as for example modulated differential scanning calorimetry (mDSC) and solid-state nuclear magnetic resonance spectroscopy (ssNMR). ssNMR is a robust, versatile, and accurate analysis technique with a large number of application possibilities.

View Article and Find Full Text PDF

Nexus: A versatile console for advanced low-field MRI.

Magn Reson Med

January 2025

Department 8.1 - Biomedical Magnetic Resonance, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.

Purpose: To develop a low-cost, high-performance, versatile, open-source console for low-field MRI applications that can integrate a multitude of different auxiliary sensors.

Methods: A new MR console was realized with four transmission and eight reception channels. The interface cards for signal transmission and reception are installed in PCI Express slots, allowing console integration in a commercial PC rack.

View Article and Find Full Text PDF

Unlabelled: Proton exchange is a fundamental chemical event, and NMR provides the most direct readout of protonation events with site-specific resolution. Conventional approaches require manual titration of sample pH to collect a series of NMR spectra at different pH values. This requires extensive sample handling and often results in significant sample loss, leading to reduced signal or the need to prepare additional samples.

View Article and Find Full Text PDF

Powdered germinated Thai rice () is widely utilised as a dietary supplement to support health and prevent diseases. This study investigated the bioactive compound profile of water extracts from beverage powder made from Thai germinated brown rice (GBRE) and assessed its anticancer effects on cholangiocarcinoma, lung cancer, and liver cancer cell lines. Proton nuclear magnetic resonance (1H-NMR) revealed 23 metabolites, including amino acids, sugar, phenolic compounds and nitrogenous compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!