Hotdog-fold has been identified in more than 1000 proteins, yet many of which in eukaryotes are less studied. No structural or functional studies of human thioesterase superfamily member 2 (hTHEM2) have been reported before. Since hTHEM2 exhibits about 20% sequence identity to Escherichia coli PaaI protein, it was proposed to be a thioesterase with a hotdog-fold. Here, we report the crystallographic structure of recombinant hTHEM2, determined by the single-wavelength anomalous dispersion method at 2.3A resolution. This structure demonstrates that hTHEM2 indeed contains a hotdog-fold and forms a back-to-back tetramer as other hotdog proteins. Based on structural and sequence conservation, the thioesterase active site in hTHEM2 is predicted. The structure and substrate specificity are most similar to those of the bacterial phenylacetyl-CoA hydrolase. Asp65, located on the central alpha-helix of subunit B, was shown by site-directed mutagenesis to be essential to catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.08.025 | DOI Listing |
bioRxiv
December 2024
Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
The PEX1/PEX6 AAA-ATPase is required for the biogenesis and maintenance of peroxisomes. Mutations in and disrupt peroxisomal matrix protein import and are the leading cause of Peroxisome Biogenesis Disorders (PBDs). The most common disease-causing mutation in PEX1 is the PEX1 allele, which results in a reduction of peroxisomal protein import.
View Article and Find Full Text PDFTransl Psychiatry
December 2024
The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, He'nan, China.
The infantile neuronal ceroid lipofuscinosis, also called CLN1 disease, is a fatal neurodegenerative disease caused by mutations in the CLN1 gene encoding palmitoyl protein thioesterase 1 (PPT1). Identifying the depalmitoylation substrates of PPT1 is crucial for understanding CLN1 disease. In this study, we found that GABAR, the critical synaptic protein essential for inhibitory neurotransmission, is a substrate of PPT1.
View Article and Find Full Text PDFBiochemistry
December 2024
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.
Salivabactin is a newly identified polyketide/nonribosomal peptide (PK/NRP) from a human oral probiotic, possessing a unique chemical structure and outstanding antibiotic activities. Although the biosynthetic gene cluster for salivabactin is known, the enzymatic logic that governs the synthesis of salivabactin has not yet been fully studied. In this work, we dissected the biosynthetic pathway for salivabactin using biochemical analysis.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Medicine, Washington University, St. Louis, MO 63110.
There is growing evidence suggesting that the lysosome or lysosome dysfunction is associated with Alzheimer's disease (AD). Pathway analysis of post mortem brain-derived proteomic data from AD patients shows that the lysosomal system is perturbed relative to similarly aged unaffected controls. However, it is unclear if these changes contributed to the pathogenesis or are a response to the disease.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Institute of Medical Science, The Second Hospital of Shandong University, Jinan, 250033, PR China. Electronic address:
Seneca virus A (SVA) is a newly discovered small nucleic acid virus, which can cause swine blister disease (PVD). Currently, there is no drug or vaccine. Studies have shown that SVA relies on the endolysosomal pathway to accomplish intracellular transport and release, and can disrupt lysosomal homeostasis, but its specific mechanism has not been revealed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!