Probiotic bacteria elicit a number of beneficial effects in the gut but the mechanisms for these health promoting effects are not entirely understood. Recent in vitro data suggest that lactobacilli can utilise nitrate and nitrite to generate nitric oxide, a gas with immunomodulating and antibacterial properties. Here we further characterised intestinal NO generation by bacteria. In rats, dietary supplementation with lactobacilli and nitrate resulted in a 3-8 fold NO increase in the small intestine and caecum, but not in colon. Caecal NO levels correlated to nitrite concentration in luminal contents. In neonates, colonic NO levels correlated to the nitrite content of breast milk and faeces. Lactobacilli and bifidobacteria isolated from the stools of two neonates, generated NO from nitrite in vitro, whereas S. aureus and E. coli rapidly consumed NO. We here show that commensal bacteria can be a significant source of NO in the gut in addition to the mucosal NO production. Intestinal NO generation can be stimulated by dietary supplementation with substrate and lactobacilli. The generation of NO by some probiotic bacteria can be counteracted by rapid NO consumption by other strains. Future studies will clarify the biological role of the bacteria-derived intestinal NO in health and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2006.06.020DOI Listing

Publication Analysis

Top Keywords

probiotic bacteria
12
generation probiotic
8
intestinal generation
8
dietary supplementation
8
levels correlated
8
correlated nitrite
8
bacteria
5
generation
4
bacteria gastrointestinal
4
gastrointestinal tract
4

Similar Publications

Aims: Supplementing Lactobacillus alongside antibiotic treatment was a curative strategy to modulate gut microbiota and alleviate antibiotic-associated dysbiosis. But the lactobacilli that are used as probiotics are sensitive or have a low level of resistance to antibiotics, so they usually cannot achieve their beneficial effect, since they are killed by the applied antibiotics. This work aimed to develop the highly resistant Lactiplantibacillus plantarum subsp.

View Article and Find Full Text PDF

Host-derived Pediococcus acidilactici B49: a promising probiotic for immunomodulation and disease control in largemouth bass (Micropterus salmoides).

Fish Shellfish Immunol

January 2025

Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453007, China.

Finding effective alternatives to antibiotics is crucial for sustainable aquaculture. Host-derived probiotics have great potential as a promising alternative to antibiotics for immune regulation and disease control in fish farming. However, limited research exists regarding the application of native probiotics in largemouth bass (Micropterus salmoides).

View Article and Find Full Text PDF

Blastocystis, an eukaryote, inhabits the intestinal tract of humans and animals worldwide. Lactobacillus acidophilus (L. acidophilus), a probiotic, has been reported to be effective against blastocystosis.

View Article and Find Full Text PDF

Bacterial adhesion in the gut is critical to evaluate their effectiveness as probiotics. Understanding the bacterial adhesion within the complex gut environment is challenging. This study explores the adhesion mechanisms and the adhesion potential of five selected bacterial strains (Escherichia coli, Lactiplantibacillus plantarum, Faecalibacterium duncaniae, Bifidobacterium longum, and Bifidobacterium longum subsp.

View Article and Find Full Text PDF

Gut mycobiome and neuropsychiatric disorders: insights and therapeutic potential.

Front Cell Neurosci

January 2025

Reserach Unit "Drosophila"UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia.

Background: The human gut mycobiome, a minor but integral component of the gut microbiome, has emerged as a significant player in host homeostasis and disease development. While bacteria have traditionally been the focus of gut microbiome studies, recent evidence suggests that fungal communities (mycobiota) may also play a crucial role in modulating health, particularly in neuropsychiatric disorders.

Objective: This review aims to provide a comprehensive overview of current knowledge on the relationship between the gut mycobiome and neuropsychiatric disorders, exploring the potential of targeting fungal communities as a novel therapeutic strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!