Hydrogen bonding markedly reduces the pK of buried carboxyl groups in proteins.

J Mol Biol

Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, College Station, TX 77843, USA.

Published: September 2006

The ionizable groups in proteins with the lowest pKs are the carboxyl groups of aspartic acid side-chains. One of the lowest, pK=0.6, is observed for Asp76 in ribonuclease T1. This low pK appeared to result from hydrogen bonds to a water molecule and to the side-chains of Asn9, Tyr11, and Thr91. The results here confirm this by showing that the pK of Asp76 increases to 1.7 in N9A, to 4.0 in Y11F, to 4.2 in T91V, to 4.4 in N9A+Y11F, to 4.9 in N9A+T91V, to 5.9 in Y11F+T91V, and to 6.4 in the triple mutant: N9A+Y11F+T91V. In ribonuclease Sa, the lowest pK=2.4 for Asp33. This pK increases to 3.9 in T56A, which removes the hydrogen bond to Asp33, and to 4.4 in T56V, which removes the hydrogen bond and replaces the -OH group with a -CH(3) group. It is clear that hydrogen bonds are able to markedly lower the pK values of carboxyl groups in proteins. These same hydrogen bonds make large contributions to the conformational stability of the proteins. At pH 7, the stability of D76A ribonuclease T1 is 3.8 kcal mol(-1) less than wild-type, and the stability of D33A ribonuclease Sa is 4.1 kcal mol(-1) less than wild-type. There is a good correlation between the changes in the pK values and the changes in stability. The results suggest that the pK values for these buried carboxyl groups would be greater than 8 in the absence of hydrogen bonds, and that the hydrogen bonds and other interactions of the carboxyl groups contribute over 8 kcal mol(-1) to the stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2006.07.056DOI Listing

Publication Analysis

Top Keywords

carboxyl groups
20
hydrogen bonds
20
groups proteins
12
kcal mol-1
12
hydrogen
8
buried carboxyl
8
removes hydrogen
8
hydrogen bond
8
ribonuclease kcal
8
mol-1 wild-type
8

Similar Publications

Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. -Toluidine (PT), benzoic acid (BA), and -aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH.

View Article and Find Full Text PDF

Herein, we report an efficient [Ru(η-CH)Cl] catalyzed oxidative C-H alkenylation of benzoic acid in the green solvent water. A regioselective olefination of benzoic acid with functionalized alkenes like styrene and acrylate was established at a very mild condition of 60 °C temperature and in an aqueous medium. In contrast to the cyclization of the carboxylic group, a selective -olefination product of benzoic acid was observed with the acrylate.

View Article and Find Full Text PDF

Two novel isostructural anionic lanthanide metal-organic frameworks, (MeNH)[Ln(HTCBPE-F)·(HCOO)·DMF]·4.5DMF·2HO (Eu-MOF and Dy-MOF), based on tetraphenylethylene carboxylate ligands were successfully constructed and characterized. These two MOFs possess porous structures and water stabilities with uncoordinated carboxylate groups and dimethyl ammonium cations, which allow for high proton conductivities (5.

View Article and Find Full Text PDF

The "catalytic triad" present at the active site of ribonuclease A (RNase A) is responsible for the cleavage of the 5'-phosphodiester bond; amino acid residues His12, Lys41 and His119 constituting this triad provide a positively charged environment at the physiological pH. Based on docking studies, 1,4,5-trisubstituted-carboxylated 1,2,3-triazoles (1,4,5-TTs) were identified as a new class of RNase A inhibitors. Therefore, two different groups of 1,4,5-TTs, functionalized with carboxylic acid groups, were synthesized by reacting pre functionalized butyne-1,4-diol derivatives with several aryl/alkyl azides under solvent and catalyst free conditions.

View Article and Find Full Text PDF

Motivated by the importance of Hg detection in water due to its harmful effect on the environment and human health, we investigated a recently developed nanocomposite based on carbon dots (CDs) and LAPONITE as an optical chemical sensor using photoluminescence emission. While several studies have reported the Hg detection using CDs' photoluminescence emission, there is a lack of in-depth investigation into the quenching mechanisms involved in turn-off sensors. In this study, we propose a Stern-Volmer analysis at three different temperatures (288, 298, and 303 K).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!