A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptome profiling of human hepatocytes treated with Aroclor 1254 reveals transcription factor regulatory networks and clusters of regulated genes. | LitMetric

Transcriptome profiling of human hepatocytes treated with Aroclor 1254 reveals transcription factor regulatory networks and clusters of regulated genes.

BMC Genomics

Fraunhofer Institute of Toxicology and Experimental Medicine (Fh-ITEM), Center for Drug Research and Medical Biotechnology, Nikolai-Fuchs-Str, 1, 30625 Hannover, Germany.

Published: August 2006

Background: Aroclor 1254 is a well-known hepatotoxin and consists of a complex mixture of polychlorinated biphenyls (PCBs), some of which have the ability to activate the aryl hydrocarbon receptor (AhR) and other transcription factors (TFs). Altered transcription factor expression enables activation of promoters of many genes, thereby inducing a regulatory gene network. In the past, computational approaches were not applied to understand the combinatorial interplay of TFs acting in concert after treatment of human hepatocyte cultures with Aroclor 1254. We were particularly interested in interrogating promoters for transcription factor binding sites of regulated genes.

Results: Here, we present a framework for studying a gene regulatory network and the large-scale regulation of transcription on the level of chromatin structure. For that purpose, we employed cDNA and oligomicroarrays to investigate transcript signatures in human hepatocyte cultures treated with Aroclor 1254 and found 910 genes to be regulated, 52 of which code for TFs and 47 of which are involved in cell cycle and apoptosis. We identified regulatory elements proximal to AhR binding sites, and this included recognition sites for the transcription factors ETS, SP1, CREB, EGR, NF-kB, NKXH, and ZBP. Notably, ECAT and TBP binding sites were identified for Aroclor 1254-induced and E2F, MAZ, HOX, and WHZ for Aroclor 1254-repressed genes. We further examined the chromosomal distribution of regulated genes and observed a statistically significant high number of gene pairs within a distance of 200 kb. Genes regulated by Aroclor 1254, are much closer located to each other than genes distributed randomly all over the genome. 37 regulated gene pairs are even found to be directly neighbored. Within these directly neighbored gene pairs, not all genes were bona fide targets for AhR (primary effect). Upon further analyses many were targets for other transcription factors whose expression was regulated by Aroclor 1254 (secondary effect).

Conclusion: We observed coordinate events in transcript regulation upon treatment of human hepatocytes with Aroclor 1254 and identified a regulatory gene network of different TFs acting in concert. We determined molecular rules for transcriptional regulation to explain, in part, the pleiotropic effect seen in animals and humans upon exposure to Aroclor 1254.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1590027PMC
http://dx.doi.org/10.1186/1471-2164-7-217DOI Listing

Publication Analysis

Top Keywords

aroclor 1254
32
transcription factor
12
transcription factors
12
binding sites
12
gene pairs
12
aroclor
10
human hepatocytes
8
treated aroclor
8
0
8
genes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!