Immobilized microalgal cells as an oxygen supply system for encapsulated pancreatic islets: a feasibility study.

Artif Organs

Diabetes and Obesity Research Laboratory, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Beilinson Campus, Petah Tikva, Israel.

Published: September 2006

Recently, a novel technique for oxygen supply to immunoisolated islets, which adopts the photosynthetic capacity of microalgae to generate oxygen, has been described. Illuminated alga cells, co-immobilized with islets in one compartment, were capable of restoring glucose-stimulated insulin secretion during perifusion with anoxic medium. In the present study, a new model system for photosynthetic oxygen supply to encapsulated islets, containing two separate compartments-one for oxygen-producing alga cells and the other for insulin-secreting pancreatic islets-is described. No insulin response to increasing glucose concentrations was found when encapsulated islets alone were perifused with oxygen-free medium. However, when the perifused chamber contained not only encapsulated islets, but also illuminated algae, immobilized in alginate, the islets showed twice the amount of insulin secretion in response to a high level of glucose (P < 0.01). This finding suggests that the level of photosynthetic oxygen generated in the algal compartment was sufficient to support the functional activity of the islets. Such a technology may offer the potential application for oxygen supply to various transplanted immunoisolated cells.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-1594.2006.00289.xDOI Listing

Publication Analysis

Top Keywords

oxygen supply
16
encapsulated islets
12
islets
8
alga cells
8
insulin secretion
8
photosynthetic oxygen
8
oxygen
6
immobilized microalgal
4
cells
4
microalgal cells
4

Similar Publications

Ferroptosis and sonodynamic therapy (SDT) are both promising therapeutic modalities, but their clinical application remains challenging due to the hypoxic tumor microenvironment and limited supply of polyunsaturated fatty acids. Developing an agent with oxygen-enhanced SDT and increased ferroptosis sensitivity is crucial for advancing tumor therapy. In this study, catalase (Cat) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) highly expressed 4T1 cells were constructed lentivirus transfection.

View Article and Find Full Text PDF

Exploring the cellular and molecular basis of nerve growth factor in cerebral ischemia recovery.

Neuroscience

December 2024

Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China. Electronic address:

Vascular obstruction often causes inadequate oxygen and nutrient supply to the brain. This deficiency results in cerebral ischemic injury, which significantly impairs neurological function. This review aimed to explore the neuroprotective and regenerative effects of nerve growth factor (NGF) in cerebral ischemic injury.

View Article and Find Full Text PDF

Background/aim: Silicosis, the most severe type of occupational pneumoconiosis, leads to diffuse pulmonary fibrosis without specific therapy. Ferroptosis is triggered by reactive oxygen species (ROS) and Fe overload-induced lipid peroxidation, which is involved in the progression of pulmonary fibrosis. As an important coenzyme in the process of aerobic respiration, Coenzyme Q10 (CoQ10) can enhance mitochondrial function and energy supply and reduce malondialdehyde (MDA) to limit the risk of fibrosis.

View Article and Find Full Text PDF

Background/aim: Tumors exhibit impaired blood flow and hypoxic areas, which can reduce the effectiveness of treatments. Characterizing these tumor features can inform treatment decisions, including the use of vasculature modulation therapies. Imaging provides insight into these characteristics, with techniques varying between clinical and preclinical settings.

View Article and Find Full Text PDF

As the substrate, tobacco waste extract (TWE) can produce bacterial cellulose (BC), a biobased material. However, nicotine inhibits BC production (adding 0.8 g/L nicotine to the HS medium had a negative effect on BC synthesis) and needs to be removed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!