The reaction of [(mu3,mu3-EDBP)Li2]2[(mu3-nBu)Li(0.5Et2O)]2 (1) [EDBP-H2 = 2,2'-ethylidenebis(4,6-di-tert-butylphenol)] with 1 equiv of ROH in toluene gave [(mu3,mu3-EDBP)Li2]2[(mu3-OR)Li]2 [R = Bn (2), CH2CH2OEt (3), and nBu (4)]. In the presence of 3 equiv of tetrahydrofuran (THF), the hexanuclear compound 1 slowly decomposed to an unusual pentanuclear Li complex, [(mu2,mu3-EDBP)2Li4(THF)2][(mu3-nBu)Li] (5). Further reaction of 5 with ROH gave [(mu2,mu3-EDBP)2Li4(THF)3][(mu4-OR)Li] [R = Bn (6), nBu (7), and CH2CH2OEt (8)] without a major change in its skeleton. Treatment of 2 with an excess of hexamethylphosphoramide (HMPA) yields [(mu2,mu2-EDBP)Li2(HMPA)2][(mu3-OBn)Li(HMPA)] (9). Compounds [(mu2,mu3-EDBP)2Li4(THF)][(mu4-OCH2CH2OEt)Li]2 (10) and [(mu2,mu2-EDBP)2Li4(mu4-OCH2CH2OEt)(HMPA)]-[Li(HMPA)4]+ (11) can be obtained by the reaction of 3 with an "oxygen-donor solvent" such as THF and HMPA, respectively. Among the compounds described above, 8 has shown great reactivity toward ring-opening polymerization of L-lactide, yielding polymers with very low polydispersity indexes in a wide range of monomer-to-initiator ratios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic060467w | DOI Listing |
Metab Brain Dis
January 2025
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.
Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.
View Article and Find Full Text PDFJ Mammary Gland Biol Neoplasia
January 2025
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
Background: Allergic rhinitis (AR) represents a persistent inflammatory condition affecting the upper respiratory tract, characterized by abnormal initiation of the immunoglobulin E (IgE)-mediated cascade. Follicular helper T (Tfh) cells and regulatory T (Tfr) cells are pivotal in orchestrating the development of IgE production in AR patients. IL-35, an anti-inflammatory cytokine, secreted by various cellular subpopulations.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Burn and Wound Repair Center, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, Hebei Province, 050035, China.
This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!