The coordination chemistry of the tetrakis(thiophosphinato)resorcinarene sulfur-donor ligands [(C6H2CH{CH2CH2Ph})4{OC(O)R}4{OP(=S)Ph2}4] (L), where R = OCH2Ph, 4-C6H4CH3, C6H11, C4H3S, or OCH2CCH, is reported. Both silver(I) and gold(I) form cationic complexes of the type [LM2]2+, in which the ligand acts as a bis(chelate) in forming complexes with linear S-M-S (M = Ag or Au) stereochemistry. Gold(I) also forms the unusual complex [L(AuCl)2][LAu2]2+, which forms a supramolecular polymer through intermolecular aurophilic attractions. Palladium(II) forms the complex [LPd2Cl2(mu-Cl)2], in which the dipalladium(II) unit extends the natural bowl structure of the resorcinarene. The solid-state and solution conformations of the complexes, as determined by X-ray structure determination and NMR spectroscopy, respectively, are similar, but several complexes were found to exhibit dynamic behavior in solution, involving either conformational mobility of the resorcinarene unit or intermolecular ligand exchange.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic060865zDOI Listing

Publication Analysis

Top Keywords

silveri goldi
8
complexes
5
structure dynamics
4
dynamics tetrakisthiophosphinatoresorcinarene
4
tetrakisthiophosphinatoresorcinarene complexes
4
complexes silveri
4
goldi palladiumii
4
palladiumii coordination
4
coordination chemistry
4
chemistry tetrakisthiophosphinatoresorcinarene
4

Similar Publications

The first paper in this Special Issue explores the synthesis, characterization, biological, and catalytic activities of new gold(I) and silver(I) complexes that are stabilized by caffeine derivatives and used as NHC ligands [...

View Article and Find Full Text PDF

Alkynylallenes offer the varied reactivity patterns of two different multiple bond linkages either separately or in concert. Initially, a short overview of their syntheses, structures, rearrangement mechanisms and synthetic utility, especially when treated with transition metal reagents such as gold(I), silver(I), platinum metals or metal carbonyls, is presented. Subsequently, we focus on the particular case of 1,2-dien-5-ynes (propargylallenes), whereby the shortness of the single atom bridge, and the consequent proximity of the allenyl and alkynyl moieties, facilitates metal-mediated interactions between them.

View Article and Find Full Text PDF

A series of new gold(I) and silver(I) N-heterocyclic carbenes bearing a 1-thio-β-d-glucose tetraacetate moiety was synthesized and chemically characterized. The compounds' stability and solubility in physiological conditions were investigated employing a multitechnique approach. Interaction studies with biologically relevant proteins, such as superoxide dismutase (SOD) and human serum albumin (HSA), were conducted via UV-vis absorption spectroscopy and high-resolution ESI mass spectrometry.

View Article and Find Full Text PDF

The imidazole alkaloid lepidiline A from the root of has a moderate to low in vitro anticancer effect. Our aim was to extend cytotoxicity investigations against a panel of cancer cells, including multidrug-resistant cancer cells, and multipotent stem cells. Lepidiline A is a N-heterocyclic carbene precursor, therefore a suitable ligand source for metal complexes.

View Article and Find Full Text PDF

Leishmaniasis is a group of parasitic diseases with the potential to infect more than 1 billion people; however, its treatment is still old and inadequate. In order to contribute to changing this view, this work consisted of the development of complexes derived from M metal ions with thioureas, aiming to obtain potential leishmanicidal agents. The thiourea ligands (HL) were obtained by reactions of -toluenesulfohydrazide with R-isothiocyanates and were used in complexation reactions with Ag and Au, leading to the formation of complexes of composition [M(HL)]X (M = Ag or Au; X = NO or Cl).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!