The quaternary compounds RE4Ni2InGe4 (RE = Dy, Ho, Er, and Tm) were obtained as large single crystals in high yields from reactions run in liquid In. The title compounds crystallize in the monoclinic C2/m space group with the Mg(5)Si(6) structure type with lattice parameters a = 15.420(2) A, b = 4.2224(7) A, c = 7.0191(11) A, and beta = 108.589(2) degrees for Dy4Ni2InGe4, a = 15.373(4) A, b = 4.2101(9) A, c = 6.9935(15) A, and beta = 108.600(3) degrees for Ho4Ni2InGe4, a = 15.334(7) A, b = 4.1937(19) A, c = 6.975(3) A, and beta =108.472(7) degrees for Er4Ni2InGe4, and a = 15.253(2) A, b = 4.1747(6) A, c = 6.9460(9) A, and beta = 108.535(2) degrees for Tm4Ni2InGe4. RE4Ni2InGe4 formed in liquid In from a melt that was rich in the rare-earth component. These compounds are polar intermetallic phases with a cationic rare-earth substructure embedded in a transition metal and main group matrix. The rare-earth atoms form a highly condensed network, leading to interatomic distances that are similar to those found in the elemental lanthanides themselves. The Dy and Ho analogues display two maxima in the susceptibility, suggesting antiferromagnetic ordering behavior and an accompanying spin reorientation. The Er analogue shows only one maximum in the susceptibility, and no magnetic ordering was observed for the Tm compound down to 2 K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic0605017 | DOI Listing |
ACS Nano
December 2024
State Key Laboratory of Heavy Oil Processing, School of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China.
The unavoidable dendrite growth and side reactions are two major issues that lead to unsatisfactory cycling stability of the Zn metal anode and premature battery failure, which constrains the wide practical application of aqueous Zn-ion batteries. Herein, a bilayered zinc fluoride-indium interface-modified zinc anode (ZnF-In@Zn) is in situ-constructed to solve these two issues through a simple solution-dipping strategy. The outer ZnF layer assures sufficient desolvation of hydrated Zn and even Zn flux; meanwhile, the interior In layer further contributes to the uniform distribution of the electric field and lower energy barrier of Zn nucleation, achieving dendrite-free and side reaction-free Zn deposition.
View Article and Find Full Text PDFLab Chip
December 2024
Department of Energy and Power Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
This paper provides a comprehensive study of neutron calibration methodologies, specifically highlighting the capabilities for n-γ discrimination in diamond and EJ-309, and stilbene scintillation detectors. The calibration process detailed in this study includes pulse height analysis and pulse shape discrimination, relying on the analysis of charge deposition resulting from both γ and neutron interactions. Utilizing 60Co and 252Cf radiation sources, the energy spectra of these sources are obtained.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2024
Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China. Electronic address:
Adv Mater
March 2024
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, State Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!