Specificity of an extracellular proteinase from Conidiobolus coronatus and its inhibition by an inhibitor from insect hemolymph.

Arch Insect Biochem Physiol

Department of Food Hygiene and Consumer Protection, Faculty of Veterinary Medicine, Agricultural University of Wroclaw, Wroclaw, Poland.

Published: August 2006

The relatively little-investigated entomopathogen Conidiobolus coronatus secretes several proteinases into culture broth. Using a combination of ion-exchange and size-exclusion chromatography, we purified to homogeneity a serine proteinase of Mr 30,000-32,000, as ascertained by SDS-PAGE. The purified enzyme showed subtilisin-like activity. It very effectively hydrolyzed N-Suc-Ala(2)-Pro-Phe-pNa with a Km-1.36 x 10(-4) M and Kcat-24 s(-1), and N-Suc-Ala(2)-Pro-Leu-pNa with Km-6.65 x 10(-4) M and Kcat-11 s(-1). The specificity index k(cat)/K(m) for the tested substrates was calculated to be 176,340 s(-1) M(-1) and 17,030 s(-1) M(-1), respectively. Using oxidized insulin B chain as a substrate, the purified proteinase exhibited specificity to aromatic and hydrophobic amino-acid residues, such as Phe, Leu, and Gly at the P1 position, splitting primarily the peptide bonds: Phe(1)-Val(2), Leu(15)-Tyr(16), and Gly(23)-Phe(24). The proteinase appeared to be sensitive to the specific synthetic inhibitors of the serine proteinases DFP (diisopropyl flourophosphate) and PMSF (phenyl-methylsulfonyl fluoride) as well as to some naturally occurring protein inhibitors of chymotrypsin. It is worth noting that the enzyme exhibited the highest sensitivity to inhibition by AMCI-1 (with an association constant of 3 x 10(10) M(-1)), an inhibitor of cathepsin G/chymotrypsin from the larval hemolymph of Apis mellifera, reinforcing the possibility of involvement of inhibitors from hemolymph in insect innate immunity. The substrate specificity and proteinase inhibitor effects indicate that the purified proteinase from the fermentation broth of Conidiobolus coronatus is a subtilisin-like serine proteinase.

Download full-text PDF

Source
http://dx.doi.org/10.1002/arch.20134DOI Listing

Publication Analysis

Top Keywords

conidiobolus coronatus
12
serine proteinase
8
s-1 m-1
8
purified proteinase
8
proteinase
7
specificity
4
specificity extracellular
4
extracellular proteinase
4
proteinase conidiobolus
4
coronatus inhibition
4

Similar Publications

Morphological and Chemical Changes in the Hemolymph of the Wax Moth Infected by the Entomopathogenic Fungus .

Pathogens

January 2025

Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.

Hemolymph enables communication between organs in insects and ensures necessary coordination and homeostasis. Its composition can provide important information about the physiological state of an insect and can have diagnostic significance, which might be particularly important in the case of harmful insects subjected to biological control. Linnaeus 1758 (Lepidoptera: Pyralidae) is a global pest to honey bee colonies.

View Article and Find Full Text PDF

Cytokines are highly conserved between mammals and insects. The present study examines the multiple effects of interferon-gamma (IFN-γ) application on the immunological defence mechanisms of Galleria mellonella larvae, invertebrates which are gaining popularity as a replacement for mammalian research models in immunological studies. G.

View Article and Find Full Text PDF

There are no standard guidelines on the management of Conidiobolus infections, and many antifungals have been used, either alone or in combination. Relapses are common even after successful management. Although localized, they can result in severe facial disfigurement and may rarely cause disseminated entomophthoromycosis, which can have fatal complications.

View Article and Find Full Text PDF

This work examines the insecticidal activity of octanoic acid (C8:0), a short-chain fatty acid detected in entomopathogenic fungus - Conidiobolus coronatus medium, against Lucilia sericata larvae and adults. The LD50 value was calculated as 3.04±0.

View Article and Find Full Text PDF

Background: In response to the replace mammal research models with insects in preliminary immunological studies, interest has grown in invertebrate defense systems. The immunological response is regulated by cytokines; however, while their role in mammals is well understood, little is known of their function in insects. A suitable target for studies into insect immunology is (Lepidoptera), the wax moth: a common host for human fungal and bacterial pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!