The density of SSRs on the published genetic map of bread wheat (Triticum aestivum L.) has steadily increased over the last few years. This has improved the efficiency of marker-assisted breeding and certain types of genetic research by providing more choice in the quality of SSRs and a greater chance of finding polymorphic markers in any cross for a chromosomal region of interest. Increased SSR density on the published wheat genetic map will further enhance breeding and research efforts. Here, sequence-tagged microsatellite profiling (STMP) is demonstrated as a rapid technique for the economical development of anonymous genomic SSRs to increase marker density on the wheat genetic map. A total of 684 polymorphic sequence-tagged microsatellites (STMs) were developed, and 380 were genetically mapped in three mapping populations, with 296 being mapped in the International Triticeae Mapping Initiative W7984 x Opata85 recombinant inbred cross. Across the three populations, a total of 479 STM loci were mapped. Several technological advantages of STMs over conventional SSRs were also observed. These include reduced marker deployment costs for fluorescent-based SSR analysis, and increased genotyping throughput by more efficient electrophoretic separation of STMs and a high amenability to multiplex PCR.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-006-0381-4DOI Listing

Publication Analysis

Top Keywords

genetic map
12
sequence-tagged microsatellites
8
microsatellites stms
8
bread wheat
8
wheat triticum
8
triticum aestivum
8
wheat genetic
8
development genetic
4
genetic mapping
4
mapping sequence-tagged
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!