Background: Cellular metabolic dysfunction is associated with occurrence of multiple-organ failure after critical illness. Glutamine (GLN) attenuates cellular metabolic dysfunction in critical illness models. The mechanism of this protection is unclear. We previously demonstrated that GLN's benefit in critical illness might be due to enhanced heat shock protein (HSP) expression. We hypothesize that GLN's attenuation of cellular metabolic dysfunction is dependent on presence of heat shock factor-1 (HSF-1).

Methods: HSF-1 wild-type and knockout mouse embryonic fibroblasts (HSF-1+/+ and HSF-1-/-) were used in all experiments. Cells were not treated, or were treated with 8 mmol/L GLN and immediately exposed to heat stress injury (45 degrees C for 45 minutes). Cells were harvested for metabolic analysis by nuclear magnetic resonance (NMR) at 24 hours postinjury. Cell survival was assessed using the MTS assay.

Results: GLN treatment in HSF-1+/+ cells led to significant attenuation of decreases in adenosine triphosphate (ATP)/adenosine diphosphate (ADP) ratio, phosphomonoester/phosphodiester (PME/PDE) ratio, and cell survival observed in non-GLN-treated HSF-1+/+ cells. In HSF-1-/- cells, the beneficial effect of GLN on preservation of ATP/ADP ratio, PME/PDE proliferation, and cell survival was lost. GLN-treated HSF-1-/- cells had a significant increase in extracellular lactate concentrations vs GLN-treated HSF+/+ cells.

Conclusions: GLN treatment attenuated cellular metabolic dysfunction and improved cell membrane recovery only in HSF-1+/+ cells. Cellular injury, as measured by lactate release and cell survival assay, was improved by GLN treatment in HSF-1+/+ cells alone. Thus, GLN's beneficial effect on cellular metabolic dysfunction and cell survival appears to be dependent on HSF-1 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0148607106030005373DOI Listing

Publication Analysis

Top Keywords

cellular metabolic
24
metabolic dysfunction
24
cell survival
20
hsf-1+/+ cells
16
heat shock
12
critical illness
12
gln treatment
12
attenuation cellular
8
dysfunction cell
8
shock factor-1
8

Similar Publications

In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown.

View Article and Find Full Text PDF

Dysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME.

View Article and Find Full Text PDF

Diabetic Neuropathy (DN) is a widespread and severely debilitating consequence of diabetes mellitus that impairs function, causes discomfort, and damages peripheral nerves. Numerous molecular pathways are involved in the pathogenesis of DN, including cyclooxygenase, polyol, protein kinase C, and inflammatory pathways. These molecular pathways may be responsible for the mechanism behind the onset and development of DN.

View Article and Find Full Text PDF

Aims And Objectives: This study aimed to explore the relationship between HERC6- associated immune response and Non-Alcoholic Fatty Liver Disease (NAFLD) and to screen drug candidates for novel treatments.

Materials And Methods: Mendelian Randomization (MR) was performed to test the relationship between a genetically predicted increase in HERC6 expression and the development of NAFLD. A single-cell RNA-seq profile of liver tissue with histological characteristics (GSE168933) was obtained.

View Article and Find Full Text PDF

Microenvironmental β-TrCP negates amino acid transport to trigger CD8 T cell exhaustion in human non-small cell lung cancer.

Cell Rep

January 2025

The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China. Electronic address:

CD8 T cell exhaustion (Tex) has been widely acknowledged in human cancer, while the underlying mechanisms remain unclear. Here, we demonstrate that reduced amino acid (aa) metabolism and mTOR inactivation are accountable for Tex in human non-small cell lung cancer (NSCLC). NSCLC cells impede the T cell-intrinsic transcription of SLC7A5 and SLC38A1, disrupting aa transport and consequently leading to mTOR inactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!