In vivo, cortical neurons and striatal medium spiny neurons (MSN) display robust subthreshold depolarizations (Up states) during which they are enabled to fire action potentials. In the cortex, Up states are believed to occur simultaneously in a neuronal ensemble and to be sustained by local network interactions. It is known that MSN are impelled into the Up state by extra-striatal (primarily cortical) inputs, but the mechanisms that sustain and determine the end of striatal Up states are still debated. Furthermore, it has not been established if brisk perturbations of ongoing cortical oscillations alter rhythmic transitions between Up and Down states in striatal neurons. Here we report that MSN Up states terminate abruptly when persistent activity in cortical ensembles providing afferents to a given striatal region is turned off by local electrical stimulation or ends spontaneously. In addition, we found that phase perturbations in MSN membrane potential slow oscillations induced by cortical stimulation replicate the stimulus-induced dynamics of spiking activity in cortical ensembles. Overall, these results suggest that striatal Up states are single-cell subthreshold representations of episodes of persistent spiking in cortical ensembles. A precise spatial and temporal alignment between episodes of cortical persistent activity and striatal Up states would allow MSN to detect specific cortical inputs embedded within a more general cortical signal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2000673PMC
http://dx.doi.org/10.1113/jphysiol.2006.113050DOI Listing

Publication Analysis

Top Keywords

cortical ensembles
16
striatal states
16
cortical
11
striatal
8
states
8
phase perturbations
8
slow oscillations
8
cortical inputs
8
persistent activity
8
activity cortical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!