Most cell types are functionally coupled by connexin (Cx) channels, i.e. exchange cytoplasmic ions and small metabolites through gap junction domains of their membrane. This form of direct cell-to-cell communication occurs in all existing animals, whatever their position in the phylogenetic scale, and up to humans. Pancreatic beta-cells are no exception, and normally cross-talk with their neighbors via channels made of Cx36. These exchanges importantly contribute to coordinate and synchronize the function of individual cells within pancreatic islets, particularly in the context of glucose-induced insulin secretion. Compelling evidence now indicates that Cx36-mediated coupling, and/or the Cx36 protein per se, play significant regulatory roles in various beta-cell functions, ranging from the biosynthesis, storage and release of insulin. Recent preliminary data further suggest that the protein may also be implicated in the balance of beta-cell growth versus necrosis and apoptosis, and in the regulated expression of specific genes. Here, we review this evidence, discuss the possible involvement of Cx36 in the pathophysiology of diabetes, and evaluate the relevance of this connexin in the therapeutic approaches to the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13813450600712019DOI Listing

Publication Analysis

Top Keywords

beta-cell functions
8
connexin36 pancreatic
4
pancreatic beta-cell
4
functions cell
4
cell types
4
types functionally
4
functionally coupled
4
coupled connexin
4
connexin channels
4
channels exchange
4

Similar Publications

Background: Alzheimer's disease (AD), the leading cause of dementia, is characterized by cognitive decline and the accumulation of amyloid-β (Aβ). It affects millions, with numbers expected to double by 2050. SMOC2, implicated in inflammation and fibrosis, may play a role in AD pathogenesis, particularly in microglial cell function, offering a potential therapeutic target.

View Article and Find Full Text PDF

Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.

View Article and Find Full Text PDF

Introduction: Despite the established influence of gut bacteria, the role of the gut virome in modulating colorectal cancer (CRC) patient chemotherapy response remains poorly understood. In this study, we investigated the impact of antiviral (AV) drug-induced gut virome dysbiosis on the efficacy of 5-FU in CRC treatment.

Methods: Using a subcutaneous CRC mouse model, we assessed tumor growth and immune responses following AV treatment, fecal microbiota transplantation (FMT), and 5-FU administration.

View Article and Find Full Text PDF

Background And Aims: The enteric nervous system independently controls gastrointestinal function including motility, which is primarily mediated by the myenteric plexus, therefore also playing a crucial role in functional intestinal disorders. Live recordings from human myenteric neurons proved to be challenging due to technical difficulties. Using the neuroimaging technique, we are able to record human colonic myenteric neuronal activity and investigate their functional properties in a large cohort of patients.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common and lethal type of primary liver cancer, frequently arising from chronic liver injury and inflammation. Despite treatment advancements, HCC prognosis remains poor, emphasizing the need for effective preventive and therapeutic strategies. This study investigates the hepatoprotective and anti-tumor effects of Hongjam, a steamed freeze-dried silkworm powder, in a diethylnitrosamine (DEN) and thioacetamide (TAA)-induced HCC mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!