2-Oxoglutaric acid (2-OG), a Krebs cycle intermediate, is a signaling molecule in many organisms. To determine which form of 2-OG, the ketone or the ketal form, is responsible for its signaling function, we have synthesized and characterized various 2-OG analogs. Only 2-methylenepentanedioic acid (2-MPA), which resembles closely the ketone form of 2-OG, is able to elicit cell responses in the cyanobacterium Anabaena by inducing nitrogen-fixing cells called heterocysts. None of the analogs mimicking the ketal form of 2-OG are able to induce heterocysts because none of them are able to interact with NtcA, a 2-OG sensor. NtcA interacts with 2-MPA and 2-OG in a similar manner, and it is necessary for heterocyst differentiation induced by 2-MPA. Therefore, it is primarily the ketone form that is responsible for the signaling role of 2-OG in Anabaena.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2006.06.009DOI Listing

Publication Analysis

Top Keywords

2-oxoglutaric acid
12
form 2-og
12
signaling role
8
ketone ketal
8
2-og
8
ketal form
8
form responsible
8
responsible signaling
8
ketone form
8
form
5

Similar Publications

Slowly digestible starch impairs growth performance of broiler chickens offered low-protein diet supplemental higher amino acid densities by inhibiting the utilization of intestinal amino acid.

J Anim Sci Biotechnol

January 2025

Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.

Background: The synchronized absorption of amino acids (AAs) and glucose in the gut is crucial for effective AA utilization and protein synthesis in the body. The study investigated how the starch digestion rate and AA levels impact intestinal AA digestion, transport and metabolism, breast muscle protein metabolism, and growth in grower broilers. A total of 720 21-day-old healthy male Arbor Acres Plus broilers were randomly assigned to 12 treatments, each with 6 replicates of 10 birds.

View Article and Find Full Text PDF

Recent therapeutic strategies have highlighted the potential of β-hydroxybutyrate (BHB) and α-ketoglutarate (α-KG) as effective anticancer agents, particularly for colon cancer. These metabolites can modulate cellular metabolism and induce epigenetic changes, inhibiting tumor growth. Nonetheless, certain cancer cells may utilize ketone bodies, like BHB as nutrient sources under hypoxic conditions, potentially reducing treatment efficacy.

View Article and Find Full Text PDF

In the context of organic farming, the introduction of a local product to wider markets and an evaluation of storage effects, metabolic and transcriptomic variations in two broccoli rabe genotypes from production cycles of two different years were studied by comparing florets of stored fresh (SF) and packaged (P) for 4 days with those harvested fresh from the field (H). Twenty-five hydrosoluble compounds, including amino acids, carbohydrates, and organic acids, were quantified by untargeted nuclear magnetic resonance (NMR). Principal component analysis produced a neat separation among the three commodity statuses with P being the most divergent and SF closer to H.

View Article and Find Full Text PDF

Metabolically Modifying the Central and Competitive Metabolic Pathways for Enhanced D-Pantoic Acid Synthesis.

J Agric Food Chem

January 2025

National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.

D-Pantoic acid is an essential precursor for the synthesis of vitamin B. However, the microbial synthesis of D-pantoic acid suffers from a low yield. Herein, to improve D-pantoic acid biosynthesis in , the central metabolic and byproduct-forming pathways were first engineered, increasing the D-pantoic acid titer to 1.

View Article and Find Full Text PDF

This work presents the development of an amperometric biosensor for detecting aspartate aminotransferase (AST) activity in biological fluids using a platinum disk electrode as the working transducer. Optimal concentrations of substrates (aspartate, α-ketoglutarate) and the coenzyme (pyridoxal phosphate) were determined to ensure efficient biosensor operation. A semi-permeable poly-m-phenylenediamine membrane was applied to enhance selectivity against electroactive interferents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!