An isometric muscle preparation was used to investigate the importance of the ventricular sarcoplasmic reticulum (SR) and extracellular Ca(2+) (2.5 up to 10.5 mM) to force generation at 25 degrees C (acclimation temperature) in two ecologically distinct Neotropical teleost fish: Curimbata (active species), and trahira (sedentary species). The post-rest force was studied with and without 10 muM ryanodine in the medium. The positive inotropism observed for both species in response to increases on extracellular Ca(2+) reflected a greater Ca(2+) influx through sarcolemma, as well as an increase in Ca(2+) liberation from the SR by the Ca(2+)-induced Ca(2+) release mechanism. The significant post-rest potentiation recorded for the curimbata and trahira control preparations (3.22+/-0.24 to 6.55+/-0.77 mN mm(-2) and 0.74+/-0.07 to 2.26+/-0.26 mN mm(-2), respectively), was completely inhibited by the addition of ryanodine to the bathing medium, suggesting a potential functionality of SR for both species. Considering the differences in these species habitats, modes of life and levels of activity and the fact of a probable SR Ca(2+) cycling in a physiological temperature, we suggest that the functionality of the SR in these species is probably related to their phylogeny.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2006.07.001DOI Listing

Publication Analysis

Top Keywords

ecologically distinct
8
distinct neotropical
8
fish curimbata
8
extracellular ca2+
8
functionality species
8
ca2+
6
species
6
cardiac function
4
function ecologically
4
neotropical freshwater
4

Similar Publications

Indian Himalayan Region (IHR) supports a plethora of biodiversity with a unique assemblage of many charismatic and endemic species. We assessed the genetic diversity, demographic history, and habitat suitability of blue sheep (Pseudois nayaur) in the IHR through the analysis of the mitochondrial DNA (mtDNA) control region (CR) and Cytochrome b gene, and 14 ecological predictor variables. We observed high genetic divergence and designated them into two genetic lineage groups, i.

View Article and Find Full Text PDF

The black garden ant () is a widely distributed species across Europe, North America, and North Africa, playing a pivotal role in ecological processes within its diverse habitats. However, the microbiome associated with remains poorly investigated. In the present study, we isolated a novel species, , from the soil of the anthill.

View Article and Find Full Text PDF

Compare Analysis of Codon Usage Bias of Nuclear Genome in Eight Sapindaceae Species.

Int J Mol Sci

December 2024

Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.

Codon usage bias (CUB) refers to the different frequencies with which various codons are utilized within a genome. Examining CUB is essential for understanding genome structure, function, and evolution. However, little was known about codon usage patterns and the factors influencing the nuclear genomes of eight ecologically significant Sapindaceae species widely utilized for food and medicine.

View Article and Find Full Text PDF

β-1,3-Glucanases (Glu) are key enzymes involved in plant defense and physiological processes through the hydrolysis of β-1,3-glucans. This study provides a comprehensive analysis of the β-1,3-glucanase gene family in wolfberry (), including their chromosomal distribution, evolutionary relationships, and expression profiles. A total of 58 genes were identified, distributed across all 12 chromosomes.

View Article and Find Full Text PDF

The forest musk deer () and Siberian roe deer () are browsers with a broad sympatric distribution in North and Southwest China. However, little is known about their spatial utilization of microhabitats and habitats. This study, conducted on Huanglong Mountain in China, analyzed the defecation site distribution, indicating preferences of forest musk deer and Siberian roe deer for their habitat demands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!