Protein synthesis down-regulation is a life-saving mechanism for many organisms exposed to xenobiotics that threaten normal life. The present study was designed to assess the spatial and seasonal variability of global protein synthesis, determined in the microsomal fraction of digestive glands from caged Mytilus galloprovincialis mussels exposed for 30 days in a relatively clean region and two unevenly polluted areas (Stations 1 and 2) along the Gulf of Patras (Greece). The in vivo activity of translating ribosomes was evaluated by analyzing the translating ribosomes, polysome content, which may serve as an indicator of the efficiency of the protein-synthesizing machinery. To correlate with classical biomonitoring strategies, various biomarkers were measured in digestive glands, including metallothionein content, heavy-metal content, and lysosomal membrane stability. In parallel, gill cells were examined for micronucleus frequency. Metal ion concentrations were also estimated in the surrounding waters as a measure of metal exposure. Substantially lower polysome content was recorded in caged mussels collected from Station 1, in particular during the winter and spring sampling. As verified by chemical analysis of the seawater and measurement of other biomarkers, Station 1 was more contaminated than Station 2. Polysome content was found negatively correlated with metallothionein levels, micronucleus frequency and cytosolic Cu and Hg in all seasons. In addition, negative correlations were obtained between polysome content and lysosomal membrane stability in winter and spring. A progressive increase in polysomes was observed from winter to autumn, in particular in samples from Station 1. A non-uniform trend was detected in 80S ribosomal monosomes, whereas the seasonal changes in ribosomal subunits were opposite to those found in polysome content. Comparisons between seasonal and local site-specific influences on polysome content provides evidence that winter and spring are the most appropriate sampling seasons for application of translation activity as a possible biomarker in biomonitoring studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2006.07.010DOI Listing

Publication Analysis

Top Keywords

polysome content
24
protein synthesis
12
winter spring
12
global protein
8
mytilus galloprovincialis
8
seasonal variability
8
digestive glands
8
translating ribosomes
8
content
8
content lysosomal
8

Similar Publications

Autophagy related 7 (ATG7) regulates food intake and liver health during asparaginase exposure.

J Biol Chem

January 2025

Nutritional Sciences Graduate Program, Rutgers University, New Brunswick, New Jersey, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States; Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, United States; Endocrinology and Animal Biosciences Graduate Program, Rutgers University, New Brunswick, New Jersey, United States; New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States. Electronic address:

Amino acid starvation by the chemotherapy agent asparaginase is a potent activator of the integrated stress response (ISR) in liver and can upregulate autophagy in some cell types. We hypothesized that autophagy related 7 (ATG7), a protein that is essential for autophagy and an ISR target gene, was necessary during exposure to asparaginase to maintain liver health. We knocked down Atg7 systemically (Atg7) or in hepatocytes only (ls-Atg7KO) in mice before exposure to pegylated asparaginase for 5 d.

View Article and Find Full Text PDF

Rhabdoid tumors, characterized and driven by the loss of the mammalian SWItch/sucrose nonfermentable subunit SMARCB1, are very aggressive childhood cancers that can arise in the brain, the kidney, or soft tissues. Cell lines derived from these tumors are specifically sensitivity to the translation inhibitor homoharringtonine. Having recently demonstrated mammalian SWItch/sucrose nonfermentable roles in translation, we assessed SMARCB1 potential roles in translation in rhabdoid tumor cells.

View Article and Find Full Text PDF

YAP promotes global mRNA translation to fuel oncogenic growth despite starvation.

Exp Mol Med

October 2024

National Creative Research Initiatives Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.

Article Synopsis
  • YAP and TAZ are crucial for stem/progenitor cell growth and their dysregulation can cause tissue growth issues.
  • YAP can counteract the negative effects of serum starvation by activating mTORC1 to boost protein synthesis, allowing cells to grow despite adverse conditions.
  • The study highlights DDIT4, which normally inhibits mTORC1 but is suppressed by YAP/TAZ, suggesting that targeting mTORC1 or protein translation may be effective for treating cancers driven by YAP/TAZ.
View Article and Find Full Text PDF

Due to its high modification content tRNAs are notoriously hard to quantify by reverse transcription and RNAseq. Bypassing numerous biases resulting from concatenation of enzymatic treatments, we here report a hybrid approach that harnesses the advantages of hybridization-based and deep sequencing-based approaches. The method renders obsolete any RNAseq related workarounds and correction factors that affect accuracy, sensitivity, and turnaround time.

View Article and Find Full Text PDF

The cytoplasm is populated with many ribonucleoprotein (RNP) particles that post-transcriptionally regulate mRNAs. These membraneless organelles assemble and disassemble in response to stress, performing functions such as sequestering stalled translation pre-initiation complexes or mRNA storage, repression and decay. Clueless (Clu) is a conserved multi-domain ribonucleoprotein essential for mitochondrial function that forms dynamic particles within the cytoplasm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!