Acute cerebral white matter damage in lethal salicylate intoxication.

Neurotoxicology

Department of Neurology, Hospital Hietzing, and Department of Neuroimmunology, Brain Research Institute, Medical University Vienna, Austria.

Published: January 2007

A 34-year-old oligophrenic woman was admitted in comatose state with marked tachypnea. History revealed the oral ingestion of a large amount of acetylsalicylate to attenuate ear pain within the preceding 3 days. Laboratory investigations showed a toxic concentration of serum salicylate (668 mg/l, toxic range above 200 mg/l) and metabolic acidosis. Oxygenation, blood pressure, electrocardiography, echocardiography and CT of thorax and brain were normal. The patient was intubated, fluid and bicarbonate was given intravenously. Six hours after admission asystolia refractory to resuscitation led to death. Autopsy showed venous congestion of the brain, cardiac dilatation and pulmonary edema. Brain histopathology showed myelin disintegration and caspase-3 activation in glial cells, whereas, grey matter changes were sparse. Acute white matter damage is suggested to be the substrate of cerebral dysfunction in salicylate intoxication and possible mechanisms are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuro.2006.06.010DOI Listing

Publication Analysis

Top Keywords

white matter
8
matter damage
8
salicylate intoxication
8
acute cerebral
4
cerebral white
4
damage lethal
4
lethal salicylate
4
intoxication 34-year-old
4
34-year-old oligophrenic
4
oligophrenic woman
4

Similar Publications

Background: Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still poorly characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS.

View Article and Find Full Text PDF

Numerous brain imaging studies have reported white matter alterations in schizophrenia, but the lipidome analysis of the corresponding tissue remains incomplete. In this study, we investigated the lipidome composition of six subcortical white matter regions corresponding to major axonal tracks in both control subjects and schizophrenia patients. All six regions exhibited a consistent pattern of quantitative lipidome alterations in schizophrenia, involving myelin-forming and mitochondria associated lipid classes.

View Article and Find Full Text PDF

Objectives: To observe the reparative effects of human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation on white matter injury (WMI) in neonatal rats and explore its mechanism through the nuclear factor-kappa B (NF-κB) signaling pathway mediated by microglial cells.

Methods: Sprague-Dawley rats, aged 2 days, were randomly divided into three groups: sham-operation,WMI, and hUC-MSC (=18 each). Fourteen days after modeling, hematoxylin-eosin staining was used to observe pathological changes in the white matter, and immunofluorescence staining was used to measure the expression level of ionized calcium-binding adapter molecule 1 (Iba1).

View Article and Find Full Text PDF

Background And Purpose: Punctate White Matter Lesion (PWML) is common in neonates. Multi-parametric MR imaging with flexible design (MULTIPLEX, MTP) generates multiple requires only about 6 min for full-head coverage. This study aimed to evaluate the value of T1WI and aT1WI contrasts of MTP in detecting neonatal punctate white matter lesions.

View Article and Find Full Text PDF

Decoding Brain Development and Aging: Pioneering Insights From MRI Techniques.

Invest Radiol

October 2024

From the Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan (A.H., S.K., J.K., M.N., W.U., S.F., T.A., A.W., K.K., S.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (A.H., M.N., S.F.); Polytechnique Montréal, Montreal, Quebec, Canada (S.N.); Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada (S.N.); and Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia (S.N.).

The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!