The effect of humidity on the film stability of Bovine Lipid Extract Surfactant (BLES) is studied using the captive bubble method. It is found that adsorbed BLES films show distinctly different stability patterns at two extreme relative humidities (RHs), i.e., bubbles formed by ambient air and by air prehumidified to 100% RH at 37 degrees C. The differences are illustrated by the ability to maintain low surface tensions at various compression ratios, the behavior of bubble clicks, and film compressibility. These results suggest that 100% RH at 37 degrees C tends to destabilize the BLES films. In turn, the experimental results indicate that the rapidly adsorbed BLES film on a captive bubble presents a barrier to water transport that retards full humidification of the bubble when ambient air is used for bubble formation. These findings necessitate careful evaluation and maintenance of environmental humidity for all in vitro assessment of lung surfactants. It is also found that the stability of adsorbed bovine natural lung surfactant (NLS) films is not as sensitive as BLES films to high humidity. This may indicate a physiological function of SP-A and/or cholesterol, which are absent in BLES, in maintaining the extraordinary film stability in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2006.07.004 | DOI Listing |
Lung surfactant is a complex mixture of lipid and protein, responsible for alveolar stability, becomes dysfunctional due to alteration of its structure and function by leaked serum materials in disease. Serum proteins, cholesterol and low density lipoprotein (LDL) were studied with bovine lipid extract surfactant (BLES) using Langmuir films, and bilayer dispersions using Raman spectroscopy. While small amount of cholesterol (10 wt%) and LDL did not significantly affect the adsorption and surface tension lowering properties of BLES.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
April 2013
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universit'e de Bourgogne, 9 Avenue A. Savary, F-21078, Dijon, France.
Pulmonary surfactant is a complex mixture of phospholipids and proteins and forms a thin film at the lung alveolar interface separating air from liquid environment. The film reduces the work of breathing during repeatable compressions of the alveoli which form a characteristic multilayer upon compression. In this work, we investigated the structure of bovine lipid extract surfactant (BLES).
View Article and Find Full Text PDFBiochim Biophys Acta
May 2012
Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada.
The exact mechanism by which pulmonary surfactant films reach the very low surface tensions required to stabilize the alveoli at end expiration remains uncertain. We utilized the nanoscale sensitivity of atomic force microscopy (AFM) to examine phospholipid (PL) phase transition and multilayer formation for two Langmuir-Blodgett (LB) systems: a simple 3 PL surfactant-like mixture and the more complex bovine lipid extract surfactant (BLES). AFM height images demonstrated that both systems develop two types of liquid condensed (LC) domains (micro- and nano-sized) within a liquid expanded phase (LE).
View Article and Find Full Text PDFBiochim Biophys Acta
January 2012
Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada.
This paper reports dynamic surface tension experiments of a lung surfactant preparation, BLES, for a wide range of concentrations, compression ratios and compression rates. These experiments were performed using Axisymmetric Drop Shape Analysis-Constrained Sessile Drop (ADSA-CSD). The main purpose of the paper is to interpret the results in terms of physical parameters using the recently developed Compression-Relaxation Model (CRM).
View Article and Find Full Text PDFLangmuir
July 2011
Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.
Natural lung surfactant contains less than 40% disaturated phospholipids, mainly dipalmitoylphosphatidylcholine (DPPC). The mechanism by which lung surfactant achieves very low near-zero surface tensions, well below its equilibrium value, is not fully understood. To date, the low surface tension of lung surfactant is usually explained by a squeeze-out model which predicts that upon film compression non-DPPC components are gradually excluded from the air-water interface into a surface-associated surfactant reservoir.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!