Transient receptor potential channels (TRPC) are plasma membrane, non-selective cationic channels and have been proposed as candidates involved in the regulation of cellular Ca2+ influx. The expression, at mRNA level, of several TRPCs has been demonstrated recently in dopaminergic neurons of the substantia nigra (SN). The aim of the present study was to characterize the expression of TRPC1, at a protein level, in the substantia nigra neurons and non-excitable cells of Wistar rats. Single-label immunohistochemistry and double-label immunofluorescence were used to study the expression of TRPC1 among substantia nigra dopamine neurons and cellular processes using antibodies against tyrosine hydroxylase (TH), substance P (SP), enkephalin, synaptophysin, vesicular glutamate transporter-2 (Vglut-2), microtubule associated protein-2 and metabotropic glutamate receptor 1 (mGluR1). Moreover, the ultrastructural localization of TRPC1 was investigated by means of electron microscopy. A set of dual label experiments was also performed to investigate the presence of TRPC1 among glial cells. Our results showed that TRPC1 is localized mainly in dendritic processes of dopamine neurons, whereas a relatively small percentage of neuronal somata display a light TRPC1 immunoreactivity. Such results were confirmed by our electron microscopy observations. Our study demonstrates, for the first time, a coexpression of TRPC1 and mGluR1 receptors in dendrites of the substantia nigra dopaminergic neurons. Such observation reinforces the concept of an involvement of TRPC1 in mGluR1-mediated excitatory inputs in rat dopamine neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2006.04932.x | DOI Listing |
Cells
January 2025
Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA.
Rotenone, a naturally occurring compound derived from the roots of tropical plants, is used as a broad-spectrum insecticide, piscicide, and pesticide. It is a classical, high-affinity mitochondrial complex I inhibitor that causes not only oxidative stress, α-synuclein phosphorylation, DJ-1 (Parkinson's disease protein 7) modifications, and inhibition of the ubiquitin-proteasome system but it is also widely considered an environmental contributor to Parkinson's disease (PD). While prodromal symptoms, such as loss of smell, constipation, sleep disorder, anxiety/depression, and the loss of dopaminergic neurons in the substantia nigra of rotenone-treated animals, have been reported, alterations of metabolic hormones and hyperinsulinemia remain largely unknown and need to be investigated.
View Article and Find Full Text PDFCells
January 2025
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia.
Traumatic brain injury (TBI) is one of the major causes of severe neurological disorders and long-term dysfunction in the nervous system. Besides inducing neurodegeneration, TBI alters stem cell activity and neurogenesis within primary neurogenic niches. However, the fate of dividing cells in other brain regions remains unclear despite offering potential targets for therapeutic intervention.
View Article and Find Full Text PDFBrain Sci
January 2025
Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Calzada de Tlalpan 4800, Mexico City 14080, Mexico.
Advanced magnetic resonance imaging (MRI) techniques are transforming the study of movement disorders by providing valuable insights into disease mechanisms. This narrative review presents a comprehensive overview of their applications in this field, offering an updated perspective on their potential for early diagnosis, disease monitoring, and therapeutic evaluation. Emerging MRI modalities such as neuromelanin-sensitive imaging, diffusion-weighted imaging, magnetization transfer imaging, and relaxometry provide sensitive biomarkers that can detect early microstructural degeneration, iron deposition, and connectivity disruptions in key regions like the substantia nigra.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Electronic Computational Equipment Design, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 03056 Kyiv, Ukraine.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and neuropsychiatric symptoms resulting from the loss of dopamine-producing neurons in the substantia nigra pars compacta (SNc). Dopamine transporter scan (DATSCAN), based on single-photon emission computed tomography (SPECT), is commonly used to evaluate the loss of dopaminergic neurons in the striatum. This study aims to identify a biomarker from DATSCAN images and develop a machine learning (ML) algorithm for PD diagnosis.
View Article and Find Full Text PDFFront Neural Circuits
January 2025
Department of Advanced Medical and Surgical Sciences, Advanced MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy.
The substantia nigra pars compacta (SNc), one of the main dopaminergic nuclei of the brain, exerts a regulatory function on the basal ganglia circuitry via the nigro-striatal pathway but its possible dopaminergic innervation of the thalamus has been only investigated in non-human primates. The impossibility of tract-tracing studies in humans has boosted advanced MRI techniques and multi-shell high-angular resolution diffusion MRI (MS-HARDI) has promised to shed more light on the structural connectivity of subcortical structures. Here, we estimated the possible dopaminergic innervation of the human thalamus via an MS-HARDI tractography of the SNc in healthy human young adults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!