Microdamage in bone: implications for fracture, repair, remodeling, and adaptation.

Crit Rev Biomed Eng

Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931-1295, USA.

Published: October 2006

Fatigue microdamage accumulates in bone as a result of physiological loading. The damage is often manifested as microcracks, which are typically 50-100 mum long. These types of cracks develop in the interstitial bone and frequently abut osteon cement lines. In vitro experimentation has shown that an accumulation of fatigue damage reduces the material properties of bone (e.g., elastic modulus). An accumulation of fatigue damage has been implicated in the etiology of stress fractures and fragility fractures. However, bone has a remarkable ability to detect and repair fatigue microdamage. This article reviews the experimental techniques for identifying and quantifying different types of microdamage in bone, the density of in vivo microcracks at different skeletal locations, the effect of microdamage on bone material properties, the role of microdamage in bone fracture, and the biological mechanisms for the detection and repair of fatigue microdamage.

Download full-text PDF

Source
http://dx.doi.org/10.1615/critrevbiomedeng.v34.i3.20DOI Listing

Publication Analysis

Top Keywords

microdamage bone
16
fatigue microdamage
12
accumulation fatigue
8
fatigue damage
8
material properties
8
repair fatigue
8
microdamage
7
bone
7
fatigue
5
bone implications
4

Similar Publications

: This study aimed to explore how the microarchitectural features of lacunae and perilacunar zones impact the biomechanics of microdamage accumulation in cortical bone, crucial for understanding bone disorders' pathogenesis and developing preventive measures. : Utilizing the phase field finite element method, the study analyzed three bone unit models with varying microarchitecture: one without lacunae, one with lacunae and one including perilacunar zones, to assess their effects on cortical bone's biomechanical properties. : The presence of lacunae was found to increase microcrack initiation risk, acting as nucleation points and accelerating microcrack propagation.

View Article and Find Full Text PDF

Overuse injury is a frequent diagnosis in occupational medicine and athletics. Using an established model of upper extremity overuse, we sought to characterize changes occurring in the forepaws and forelimbs of mature female rats (14-18 months of age). Thirty-three rats underwent a 4-week shaping period, before performing a high-repetition low-force (HRLF) task for 12 weeks, with the results being compared to 32 mature controls.

View Article and Find Full Text PDF

Analysis of cutting forces and microdamage during indentation cutting of bone.

J Mech Behav Biomed Mater

December 2024

Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.

Article Synopsis
  • In surgery, wedge-shaped blades are used to cut bone, but there's little research on how blade shape affects cutting forces and resultant microdamage.
  • The study tested compact bovine bone with various wedge blade geometries, identifying significant relationships between blade angle, edge radius, orientation, cutting force, and microdamage.
  • Results indicated a direct correlation between the cutting force and the level of microdamage, enhancing our understanding of the biomechanics involved in surgical bone cutting.
View Article and Find Full Text PDF
Article Synopsis
  • - Bone stress injuries (BSIs) are overuse injuries that occur when there's repetitive strain on bone, either from excessive physical activity on healthy bone or normal activity on already weakened bone, often seen in younger athletes and those with medical conditions affecting bone density.
  • - Stress fractures are a severe form of BSIs, representing about 20% of cases and show clear signs on imaging; untreated, they can lead to complete fractures, with the main symptoms being localized pain and tenderness in response to increased physical loads.
  • - Treatment involves early intervention, focusing on modifying risk factors like nutrition and activity; imaging such as X-rays and MRIs help confirm BSIs, with management approaches varying based on the injury's severity and location, necessitating specialist
View Article and Find Full Text PDF

Sequential irradiation has been advocated for mitigating the reduction in fatigue properties of tendon compared to a single dose. However, to our knowledge, its capability of mitigating fatigue losses in bone is unknown. Recently, we reported that sequential irradiation did not mitigate losses in high-cycle S-N fatigue life of cortical bone at 15 kGy; however, it is unclear if sequential irradiation provides a benefit to fatigue crack propagation resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!